
Static Test Flakiness Prediction
Valeria Pontillo

SeSa Lab — Department of Computer Science, University of Salerno
Fisciano, Italy

vpontillo@unisa.it

ABSTRACT
The problem of flakiness occurswhen a test case is non-deterministic
and exhibits both a passing and failing behavior when run against
the same code. Over the last years, the software engineering re-
search community has been working toward defining approaches
for detecting and addressing test flakiness, but most of these ap-
proaches suffer from scalability issues. Recently, this limitation has
been targeted throughmachine learning solutions that could predict
flaky tests using various features, both static and dynamic. Unfortu-
nately, the proposed solutions involve features that could be costly
to compute. In this paper, I perform a step forward and predict test
flakiness only using statically computable metrics. I conducted an
experiment on 18 Java projects coming from the FlakeFlagger
dataset. First, I statistically assess the differences between flaky
and non-flaky tests in terms of 25 static metrics in an individual
and combined way. Then, I experimented with a machine learning
approach that predicts flakiness based on the previously evaluated
factors. The results show that static features can be used to char-
acterize flaky tests: this is especially true for metrics and smells
connected to source code complexity. In addition, this new static
approach has performance comparable to the machine learning
models already in the literature in terms of F-Measure.

ACM Reference Format:
Valeria Pontillo. 2022. Static Test Flakiness Prediction. In 44th International
Conference on Software Engineering Companion (ICSE ’22 Companion), May
21–29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 3 pages. https:
//doi.org/10.1145/3510454.3522680

1 INTRODUCTION AND MOTIVATION
During regression testing, the term flaky test is used to describe a
test case that shows a non-deterministic behavior when run against
the same code. According to the literature, this unexpected behavior
does not only make the test result unreliable but (1) may hide real
defects and be hard to reproduce [19]; (2) increase testing costs, as
developers, invest time debugging failures that are not real [16];
(3) can reduce the overall developer’s confidence on test cases, po-
tentially leading to neglect real defects [9]. The consequences of
test flakiness have been made more and more popular by practi-
tioners and companies worldwide (e.g., [10, 21]), who all called

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9223-5/22/05. . . $15.00
https://doi.org/10.1145/3510454.3522680

for automated mechanisms to detect and predict them. The soft-
ware engineering research community has been contributing with
empirical investigations aiming at eliciting the causes of flakiness
[9, 17–20] as well as with the definition of techniques for detecting
and addressing them [4, 8, 29, 31]. Despite the efforts made by the
researchers, the proposed solutions for both detection and predic-
tion of flakiness are not always optimal since these solutions suffer
from poor scalability or involve features that are costly to calculate.
It seems necessary to identify alternative techniques for detecting
and predicting flaky tests.

2 RELATEDWORK
The discussion concerns only the seminal papers on the topic that
have inspired this work. From the perspective of flakiness detection,
researchers devised alternatives like DeFlaker [4], that works at
commit-level and relies on the differential code coverage extracted
from the analysis of test execution from a commit to another. More-
over, the use of machine learning approaches has been proposed
to predict the presence of a flaky tests. Pinto et al. [24] and further
replications [6, 12] exploited the test code dictionary to discrimi-
nate the presence of potential flakiness. More recently, Alshammari
et al. [1] devised a supervised learning model that, using a mixture
of code and coverage metrics, can predict flaky tests with an accu-
racy up to 86%. While these previous research efforts have shown
promising results, they all involve steps that might deteriorate the
scalability of the proposed techniques. More particularly, the tech-
niques proposed by Bell et al. [4], and Alshammari et al. [1] require
the computation of dynamic features, while the approach by Pinto
et al. [24] relies on natural language processing, which is known
to be costly as the corpus of the text to analyze increases in size
[3]. Recently Pontillo et al. [25] aimed at conducting a feasibility
study to assess whether a static prediction of test flakiness would
be possible, i.e., whether we could identify likely flaky test cases
only based on their design. In particular, the authors analyzed the
iDFlakies dataset,1 and investigated the differences between flaky
and non-flaky tests in terms of 25 test and production code met-
rics and smells. The results achieved by this work indicated the
feasibility of devising a static approach to flaky tests prediction.

3 PROPOSED SOLUTION
I replicated the work proposed by Pontillo et al. [25] on the Flake-
Flagger dataset,2 in order to increase the generalizability of the
results. This analysis was conducted on a new dataset of 9,785 test
cases, including 670 flaky tests. After this initial replication, which
showed statistically significant differences between flaky and non-
flaky sets for metrics connected to code complexity and assertion,
I built on top of the replication to devise a prediction model that

1The iDFlakies dataset: https://sites.google.com/view/flakytestdataset/home.
2The FlakeFlagger dataset: https://zenodo.org/record/4450723#.YXetWprP2Uk.

https://orcid.org/0000-0001-6012-9947
https://doi.org/10.1145/3510454.3522680
https://doi.org/10.1145/3510454.3522680
https://doi.org/10.1145/3510454.3522680
https://sites.google.com/view/flakytestdataset/home
https://zenodo.org/record/4450723##.YXetWprP2Uk

ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA Valeria Pontillo

could identify flaky tests only considering the design of test cases.
For this study, I evaluated Decision Trees [11], Naive Bayes [30],
Multilayer Perceptron [28], and Support Vector Machine [23] as
basic classifiers. Additionally, I also considered two ensemble tech-
niques such as Ada Boost [27], and Random Forest [13]. In terms
of training, I had to deal with the flaky test problem being unbal-
anced. The number of flaky test instances represented the 6.8% of
the total amount of test cases in the dataset. Hence, before running
the models, I applied the Synthetic Minority Oversampling Tech-
nique, a.k.a SMOTE [7], to balance the data. I employed a ten-fold
cross-validation [5, 14], applying it on both individual projects and
considering all projects as a unique dataset. The first necessary step
is related to the feature engineering process, that is, the identifica-
tion of the relevant metrics to use as predictors. While the statistical
exercise conducted as the first step provided indications on which
features are more connected to test flakiness, it does not necessarily
provide insights into the predictive power of the considered metrics
[2]. I was interested in assessing the value of the metrics as features
of a machine learner more precisely. Hence, I performed a further
step ahead by quantifying the predictive power of each metric in
terms of information gain [26].

Table 1: List of features with information gain (IG). I have
chosen to include features with IG>0.

FlakeFlagger dataset
Features IG Features IG
LOC 0.1267 TLOC 0.0253
Halstead Vocabulary 0.1239 Complex Class 0.0188
Halstead Length 0.1117 McCabe 0.0178
LCOM2 0.1063 Mystery Guest 0.0152
WMC 0.0998 Assertion Roulette 0.0101
MPC 0.0978 Conditional Test Logic 0.0061
RFC 0.0787 Eager Test 0.0061
Halstead Volume 0.0558 Fire and Forget 0.0021
Spaghetti Code 0.0355 Functional Decomposition 0.0017
CBO 0.0305 Assertion Density 0.0015

4 PRELIMINARY RESULTS
To verify the presence of possible statistically significant differences
between the different machine learning algorithms, I exploited the
Nemenyi test [22] for statistical significance and analyzed its results
by mean on MCM (Multiple Comparison with the best) plots [15].
The results, obtained with the nemenyi function available in R
toolkit,3 have shown that the best classifier is Random Forest.

Table 1 reports the outcome of the feature engineering process,
showing the information gain (IG) obtained when building the
model. We can observe that there are 20 features with an IG >

0, and the higher values are related to production and test code
complexity measures. Other features with a high IG are Eager Test,
Mystery Guest, and Spaghetti Code, meaning that the presence of
design flaws, either in production or test code, might provide indica-
tions of test flakiness. Perhaps more interestingly, the assert-related
features have lower predictive power for what one could have rea-
sonably expected from previous work [25] and my preliminary

3https://www.r-project.org/

analysis, in which the assert-related features are the most statisti-
cally significant between the two sets. This result seems to suggest
that a high number of (undocumented) assertions is connected to
test flakiness but not enough to clearly enable its prediction.

Table 2: Results of the Random Forest classifiers for the
dataset in terms of True Positives, True Negatives, False Posi-
tives, False Negatives, Precision, Recall, and F-Measures. The
last row (“Total”) reports the results when considering all
projects as a unique dataset.

FlakeFlagger Random Forest
Project Tests Flaky Tests TP TN FP FN Pr R F
achilles 1,053 4 2 1,048 1 2 66% 50% 57%
activiti 169 16 5 139 14 11 26% 31% 28%
alluxio 186 122 122 62 2 0 98% 100% 99%
ambari 294 52 47 242 0 5 90% 94% 99%
elastic-job-lite 521 3 2 515 3 1 40% 66% 50%
hbase 368 121 109 233 14 12 88% 90% 89%
hector 121 33 25 81 7 8 78% 75% 76%
httpcore 524 15 9 503 6 6 60% 60% 60%
http-request 161 18 0 143 0 18 NaN 0% NaN
incubator-dubbo 1,681 18 3 1,649 14 15 17% 16% 17%
java-websocket 107 21 20 85 1 1 95% 95% 95%
logback 655 15 2 639 1 13 66% 13% 22%
ninja 352 16 16 331 5 0 76% 100% 86%
okhttp 782 108 51 609 65 57 43% 47% 45%
orbit 26 4 2 20 2 2 50% 50% 50%
spring-boot 1,634 82 63 1,535 17 19 78% 76% 77%
undertow 48 6 2 39 3 4 40% 33% 26%
wro4j 1,103 16 0 1,081 6 16 0% 0% NaN
Total 9,785 670 473 8,980 135 197 77% 70% 74%

Table 2 reports the results obtained with the Random Forest
classifier. We can observe that there are only two projects where the
number of true positives was zero, i.e., Http-Reqest and Wro4j.
Besides these two cases, we could observe that the performance is
almost always good, except for five projects in which the F-Measure
does not even reach 50%. When putting all projects together, the
number of true positives was high (473), and the number of false
positives was low (135), with the performance metrics ranging from
70% to 77%. My results provide two main insights. First, a fully static
approach could reach high levels of precision in situations where
the number of flaky tests is large enough or their diversity is low
enough to ensure the learning of their characteristics. Second, there
are projects for which the use of machine learning does not look
reasonable: further research should be done to investigate when to
use machine learning or complement it with heuristic approaches
that could assist when learning is not a suitable option.

5 CONTRIBUTIONS AND FUTUREWORK
I presented a new approach to predict flaky tests based on stati-
cally computable metrics that have been previously analyzed. This
empirical study has shown that (1) features related to code com-
plexity metrics and test smells are the metrics that contribute most
to this static approach; (2) the newly devised machine learning
model achieves performance up to 74% in terms of F-Measure, be-
ing nomuchworse than techniques that adopt more complex and/or
dynamic computations. My future work will be focused on under-
standing the relation between statically computable factors (e.g.,
code complexity or test smells) and test flakiness. Finally, I aim
at conducting additional investigations on how to best configure
machine learning pipelines for the problem of flaky test prediction.

https://www.r-project.org/

Static Test Flakiness Prediction ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA

REFERENCES
[1] A. Alshammari, C. Morris, M. Hilton, and J. Bell. 2021. Flakeflagger: Predicting

flakiness without rerunning tests. In ICSE 2021. IEEE, 1572–1584.
[2] B Azhagusundari, Antony Selvadoss Thanamani, et al. 2013. Feature selection

based on information gain. International Journal of Innovative Technology and
Exploring Engineering (IJITEE) 2, 2 (2013), 18–21.

[3] Michele Banko and Eric Brill. 2001. Scaling to very very large corpora for
natural language disambiguation. In Proceedings of the 39th annual meeting of
the Association for Computational Linguistics. 26–33.

[4] J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Marinov. 2018. DeFlaker:
Automatically detecting flaky tests. In ICSE 2018. IEEE, 433–444.

[5] Yoshua Bengio and Yves Grandvalet. 2004. No Unbiased Estimator of the Variance
of K-Fold Cross-Validation. J. Mach. Learn. Res. 5 (Dec. 2004), 1089–1105.

[6] B. Camara, M. Silva, A. Endo, and S. Vergilio. 2021. What is the Vocabulary of
Flaky Tests? An Extended Replication. arXiv preprint arXiv:2103.12670 (2021).

[7] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer.
2002. SMOTE: synthetic minority over-sampling technique. Journal of artificial
intelligence research 16 (2002), 321–357.

[8] B. Daniel, V. Jagannath, D. Dig, and D. Marinov. 2009. ReAssert: Suggesting
repairs for broken unit tests. In ASE 2009. IEEE, 433–444.

[9] M. Eck, F. Palomba, M. Castelluccio, and A. Bacchelli. 2019. Understanding flaky
tests: The developer’s perspective. In ESEC/FSE 2019. 830–840.

[10] M. Fowler. 2011. Eradicating non-determinism in tests. Martin Fowler Personal
Blog (2011).

[11] Yoav Freund and Llew Mason. 1999. The alternating decision tree learning
algorithm. In icml, Vol. 99. Citeseer, 124–133.

[12] G. Haben, S. Habchi, M. Papadakis, M. Cordy, and Y. Le Traon. 2021. A Replication
Study on the Usability of Code Vocabulary in Predicting Flaky Tests. In MSR
2021.

[13] Tin Kam Ho. 1995. Random decision forests. In Proceedings of 3rd international
conference on document analysis and recognition, Vol. 1. IEEE, 278–282.

[14] Ron Kohavi. 1995. A Study of Cross-Validation and Bootstrap for Accuracy
Estimation and Model Selection. In Proceedings of the 14th International Joint Con-
ference on Artificial Intelligence - Volume 2 (Montreal, Quebec, Canada) (IJCAI’95).
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1137–1143.

[15] Alex J Koning, Philip Hans Franses, Michele Hibon, and Herman O Stekler. 2005.
The M3 competition: Statistical tests of the results. International Journal of

Forecasting 21, 3 (2005), 397–409.
[16] F. Lacoste. 2009. Killing the gatekeeper: Introducing a continuous integration

system. In 2009 agile conference. IEEE, 387–392.
[17] W. Lam, S. Winter, A. Astorga, V. Stodden, and D. Marinov. 2020. Understanding

Reproducibility and Characteristics of Flaky Tests Through Test Reruns in Java
Projects. In ISSRE 2020. IEEE, 403–413.

[18] W. Lam, S. Winter, A. Wei, T. Xie, D. Marinov, and J. Bell. 2020. A large-scale lon-
gitudinal study of flaky tests. Proceedings of the ACM on Programming Languages
4, OOPSLA (2020), 1–29.

[19] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov. 2014. An empirical analysis of flaky
tests. In ESEC/FSE 2014. 643–653.

[20] A. Memon and M. Cohen. 2013. Automated testing of GUI applications: models,
tools, and controlling flakiness. In ICSE 2013. IEEE, 1479–1480.

[21] J. Micco. 2017. The state of continuous integration testing@ Google. (2017).
[22] Peter Bjorn Nemenyi. 1963. Distribution-free multiple comparisons. Princeton

University.
[23] William S Noble. 2006. What is a support vector machine? Nature biotechnology

24, 12 (2006), 1565–1567.
[24] G. Pinto, B. Miranda, S. Dissanayake, M. D’Amorim, C. Treude, and A. Bertolino.

2020. What is the vocabulary of flaky tests?. In MSR 2020. 492–502.
[25] Valeria Pontillo, Fabio Palomba, and Filomena Ferrucci. 2021. Toward Static

Test Flakiness Prediction: A Feasibility Study (MaLTESQuE 2021). Association
for Computing Machinery, New York, NY, USA, 19–24. https://doi.org/10.1145/
3472674.3473981

[26] J. Ross Quinlan. 1986. Induction of decision trees. Machine learning 1, 1 (1986),
81–106.

[27] Robert E Schapire. 2013. Explaining adaboost. In Empirical inference. Springer,
37–52.

[28] H Taud and JF Mas. 2018. Multilayer perceptron (MLP). In Geomatic Approaches
for Modeling Land Change Scenarios. Springer, 451–455.

[29] V. Terragni, P. Salza, and F. Ferrucci. 2020. A container-based infrastructure for
fuzzy-driven root causing of flaky tests. In ICSE 2020. 69–72.

[30] Geoffrey I Webb, Eamonn Keogh, and Risto Miikkulainen. 2010. Naïve Bayes.
Encyclopedia of machine learning 15 (2010), 713–714.

[31] S. Zhang, D. Jalali, J. Wuttke, K. Muşlu, W. Lam, M. Ernst, and D. Notkin. 2014.
Empirically revisiting the test independence assumption. In ISSTA 2014. 385–396.

https://doi.org/10.1145/3472674.3473981
https://doi.org/10.1145/3472674.3473981

	Abstract
	1 Introduction and Motivation
	2 Related Work
	3 Proposed solution
	4 Preliminary Results
	5 Contributions and Future Work
	References

