
Toward Systematic Counterfactual Fairness Evaluation of Large
Language Models: The CAFFE Framework

Alessandra Parziale
alessandra.parziale@gssi.it
Gran Sasso Science Institute

L’Aquila, Italy

Gianmario Voria
gvoria@unisa.it

University of Salerno
Fisciano, Italy

Valeria Pontillo
valeria.pontillo@gssi.it

Gran Sasso Science Institute
L’Aquila, Italy

Gemma Catolino
gcatolino@unisa.it
University of Salerno

Fisciano, Italy

Andrea De Lucia
adelucia@unisa.it

University of Salerno
Fisciano, Italy

Fabio Palomba
fpalomba@unisa.it
University of Salerno

Fisciano, Italy

ABSTRACT

Nowadays, Large Language Models (LLMs) are foundational com-
ponents of modern software systems. As their influence grows,
concerns about fairness have become increasingly pressing. Prior
work has proposed metamorphic testing to detect fairness issues,
applying input transformations to uncover inconsistencies in model
behavior. This paper introduces an alternative perspective for test-
ing counterfactual fairness in LLMs, proposing a structured and

intent-aware framework coined CAFFE (CounterfactualAssessment
Framework for Fairness Evaluation). Inspired by traditional non-
functional testing, CAFFE (1) formalizes LLM-Fairness test cases
through explicitly defined components, including prompt intent,
conversational context, input variants, expected fairness thresh-
olds, and test environment configuration, (2) assists testers by au-
tomatically generating targeted test data, and (3) evaluates model
responses using semantic similarity metrics. Our experiments, con-
ducted on three different architectural families of LLM, demonstrate
that CAFFE achieves broader bias coverage and more reliable de-
tection of unfair behavior than existing metamorphic approaches.

CCS CONCEPTS

• Software and its engineering→ Software defect analysis.

KEYWORDS

Counterfactual Fairness; Fairness Assessment; Large Language
Models; Software Engineering for Artificial Intelligence.

ACM Reference Format:

Alessandra Parziale, Gianmario Voria, Valeria Pontillo, Gemma Catolino,
Andrea De Lucia, and Fabio Palomba. 2026. Toward Systematic Counterfac-
tual Fairness Evaluation of Large Language Models: The CAFFE Framework.
In Proceedings of International Conference on Software Engineering (ICSE’26).

ACM, New York, NY, USA, 13 pages. https://doi.org/XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE’26, April 12–18, 2026, Rio de Janeiro, Brazil

© 2026 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/2018/06
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

Large Language Models (LLMs) are increasingly adopted as foun-
dational components in software systems [9, 43], supporting a
wide range of applications, from end-user services [34, 46, 56] to
software engineering tools [10, 24, 64]. As these models become
deeply integrated into decision-making pipelines, concerns about
fairness, i.e., the expectation that systems treat individuals equi-
tably without reinforcing societal biases, have become increasingly
pressing [18, 30, 51]. Indeed, recent studies show that LLMs can
amplify harmful stereotypes, generate biased content, and reinforce
inequalities across domains. For example, minor prompt variation,
e.g., in gender, can yield divergent outputs despite identical intent
[21, 44, 60]. These disparities are evident in contexts such as biased
information retrieval [21], unfair recruitment outcomes [44], gen-
dered role assignments in software engineering [60], and even in
library recommendation systems [47]. These concerns are not lim-
ited to academia, but also increasingly recognized at the industry
level; for instance, a recent Gartner report [28] identifies bias and
ethical risk as key challenges in the deployment of generative AI.

In response to these challenges, the software engineering com-
munity has investigated fairness in LLM-based systems through
empirical studies on bias in generated content (e.g., [44, 60]), au-
tomated techniques for mitigating unfairness (e.g., [7, 47]), and
testing approaches aimed at detecting biased behavior in model
predictions (e.g., [17, 26]). Our work contributes to the latter line of
research, with a focus on systematically testing the fairness proper-
ties of LLMs under counterfactual conditions. Within this space, an
influential research strategy has been metamorphic testing [32, 38].
It defines metamorphic relations, i.e., systematic transformations of
test inputs that should not alter the expected output, such as modi-
fying sensitive attributes (e.g., gender or ethnicity) while requiring
the LLM to produce semantically equivalent responses.

While prior research has shown that metamorphic testing can
effectively reveal fairness issues in LLMs [16, 23], our work in-
troduces an alternative perspective by advocating a structured

and intent-aware approach to fairness testing, inspired by
traditional testing practices for non-functional attributes [33, 57].
This perspective is motivated by the need to make fairness evalua-
tions more (1) reproducible, by clearly defining the conditions under
which a fairness claim holds, (2) auditable, by making assumptions
and expectations about fairness explicit, and (3) extensible, by en-
abling the systematic adaptation of tests across different prompts,

https://orcid.org/0009-0001-0758-3988
https://orcid.org/0009-0002-5394-8148
https://orcid.org/0000-0001-6012-9947
https://orcid.org/0000-0002-4689-3401
https://orcid.org/0000-0002-4238-1425
https://orcid.org/0000-0001-9337-5116
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

ICSE’26, April 12–18, 2026, Rio de Janeiro, Brazil Parziale et al.

models, or deployment contexts. Rather than focusing solely on
input-output invariance—which is the typical use case in metamor-
phic testing—we propose formalizing fairness test cases along key
dimensions such as prompt intent, conversational context, expected
fairness thresholds, and test environment configuration.

Following these considerations, this paper introduces CAFFE
(Counterfactual Assessment Framework for Fairness Evaluation),
a framework that integrates counterfactual fairness principles with
structured test case definitions inspired by the ISO/IEC/IEEE 29119

standard [3]. Our framework automatically generates counterfac-
tual test data through stereotype-aware prompt construction, en-
hancing both linguistic diversity and semantic consistency across
test cases. We evaluate the capabilities of CAFFE across a diverse set
of interaction scenarios using three models of different architectural
families, GPT, LLaMA, and Mistral. Our results show that CAFFE
generates linguistically varied counterfactual prompts grounded
in real-world stereotypes with high semantic fidelity. Compared to
state-of-the-art metamorphic testing, CAFFE improves the detec-
tion of fairness violations by up to 60%, particularly in cases where
unfair outputs depend on prompt intent or subtle contextual shifts.
To sum up, this paper offers three main contributions: (1) a novel

testing framework, CAFFE, that enables intent-aware, counter-
factual fairness evaluation of LLMs. It integrates structured test
case definitions, automated prompt generation, and semantic-based
response assessment; (2) an empirical evaluation of the frame-

work on three LLMs, showing that CAFFE improves fairness bug
detection by up to 60% compared to a state-of-the-art metamorphic
testing approach, while also providing higher bias coverage across
different test intents and model configurations; (3) a replication

package [50], which includes all the material used in the study to
support reuse and reproducibility.

2 BACKGROUND AND RELATEDWORK

2.1 Terminology

Our work focuses on “fairness”, which is understood as the expec-
tation that models avoid biased outcomes or unequal treatment
based on sensitive attributes [18, 30, 51]. Fairness in ML is often
categorized as group-based, which ensure parity of outcomes across
demographic groups, or individual-based notions, which require
similar individuals to be treated similarly. We adopt counterfactual
fairness, an individual-based notion requiring model outputs to
remain unchanged when only the sensitive attribute varies [36, 37].

� Counterfactual Fairness: A model is considered fair with

respect to a sensitive attribute if, for every pair of identical inputs

differing only in that attribute, the output does not change.
When it comes to LLMs, this implies that prompts differing

only in sensitive attributes, but expressing the same intent, should
yield consistent responses [27]. This principle is particularly suited
to LLMs, whose non-deterministic and context-sensitive behavior
makes group-level fairness difficult to interpret. This is because
LLMs do not produce fixed outputs and often adapt their responses
based on subtle linguistic cues or prior context, making it hard to
gather consistent statistics across demographic groups or to define
representative group-based comparisons. In contrast, counterfac-
tual fairness allows for localized, pairwise assessments by comparing

responses to minimally altered prompts, enabling more precise de-
tection of disparities directly attributable to sensitive attributes [27].
Violations of this principle can be considered as fairness bugs [17]:

� Fairness Bug: An imperfection in a software system that leads

to unjust or inconsistent outputs when the input is minimally altered

with sensitive information. Such discrepancies, which violate indi-

vidual fairness or produce disparate outcomes across demographic

groups, may signal bias embedded in the model’s behavior [17].

To detect instances of fairness bugs, researchers have proposed
systematic testing activities under the umbrella of LLM-Fairness

testing [17, 26]. This is defined as follows:
� LLM-Fairness testing: Given a language model 𝑆 , a set of

inputs 𝐼 , the required fairness condition 𝐶 , and the observed fairness

condition𝐶′
, LLM-Fairness testing consists of executing 𝐼 on 𝑆 to iden-

tify any discrepancies between 𝐶 and 𝐶′
in the generated responses,

measuring to what extent the system discriminates.

LLM fairness testing seeks to reveal how sensitive attributes in
prompts affect model outputs by detecting correlated variations
and discrepancies between expected and observed fairness [26].
This aligns with counterfactual fairness [36], guiding test designs
that isolate the impact of individual attributes.

2.2 Related Work and Motivation

LLM evaluation poses challenges due to non-determinism or prompt
sensitivity, which complicate oracle definition and output evalu-
ation [15]. Early efforts include evaluations using templates and
semi-automated assessment: Arawjo et al. [5] proposed a visual
toolkit for comparing outputs across prompt variations, while Yoon
et al. [65] employed random testing to improve failure detection.

When it comes to fairness testing, recent works have proposed
techniques specifically targeting social bias and discrimination
in LLMs. Morales et al. [41, 42] introduced LangBiTe, a domain-
specific language (DSL) for supporting ethical assessments of LLM-
based applications through a model-driven process involving a re-
quirements engineer, a tester, and a prompt engineer. LangBiTe re-
quires the specification of ethical requirements and sensitive groups,
and then derives template-based test cases to verify compliancewith
the predefined ethical goals. In contrast, CAFFE introduces a sys-
tematic counterfactual fairness testing paradigm that is grounded
in explicit test case formalization inspired by ISO/IEC/IEEE 29119

standards. It automatically constructs intent-aware and realistic
counterfactual test cases, defines quantitative fairness thresholds,
and evaluates responses through semantic similarity metrics. This
represents a methodological shift from categorical, template-based
verification toward continuous fairness assessment. While both
frameworks share the goal of evaluating LLM fairness, they operate
under different paradigms: LangBiTe focuses on requirements spec-
ification and compliance checking within a model-driven pipeline,
whereas CAFFE enables structured, counterfactual, and semantic
evaluation directly executable by testers without prior domain
modeling. Accordingly, CAFFE complements LangBiTe, offering
an additional, systematic layer of fairness assessment.

Another study closely to our work is BiasAsker [61]. While
both frameworks share the overarching goal of identifying fairness
issues, they differ in their intended use cases and methodological

Toward Systematic Counterfactual Fairness Evaluation of Large Language Models: The CAFFE Framework ICSE’26, April 12–18, 2026, Rio de Janeiro, Brazil

approach. BiasAsker focuses on the Question&Answering setting
and generates test prompts by systematically and exhaustively
combining social groups with biased properties, generating syn-
thetic inputs intended to expose boundary-case unfairness. These
prompts are individually evaluated using rule-based oracles that
reflect predefined fairness expectations. In contrast, CAFFE sup-
ports a broader range of user-defined intents and automatically
generates realistic, semantically consistent counterfactual prompt
pairs that vary only in the sensitive attribute. This enables fairness
assessments rooted in more natural and goal-driven conversational
contexts. Furthermore, CAFFE adopts a semantic similarity-based
evaluation strategy that aligns with the principle of counterfactual
fairness, allowing for a graded and context-aware assessment of dis-
parities. Therefore, the two approaches are complementary: while
BiasAsker excels at structured rule-based checks in controlled
scenarios, CAFFE offers a flexible and extensible framework for
intent-aware and user-centered fairness testing.

The closest research line is represented by METAL [32], a frame-
work that applies metamorphic testing to assess quality attributes
of LLMs, including fairness, through the definition of metamor-
phic relations such as gender swapping or synonym substitutions.
METAL shares CAFFE’s testing perspective, as both frameworks
evaluate fairness by assessing response disparities across seman-
tically related prompts. However, METAL operates with a differ-
ent strategy, focusing on the consistency of model outputs under
controlled transformations and quantifying violations via the At-
tack Success Rate (ASR) metric. In contrast, CAFFE extends this
principle through explicit test case formalization and the use of
semantic similarity thresholds that operationalize counterfactual
fairness. Accordingly, while METAL provides a valuable foundation
for metamorphic fairness testing, CAFFE generalizes this approach
into a systematic framework for counterfactual fairness assessment
applicable across diverse testing intents and LLM architectures.

In the domain of code generation, Huang et al. [31] proposed
a fairness testing framework to empirically assess social bias in
LLM-generated code, revealing significant disparities across five
models. While their work focuses on domain-specific metrics and
mitigation via feedback-driven refinement, our approach targets
general-purpose fairness testing through structured, intent-aware
test case definitions applicable across interaction scenarios.

Based on the considerations above, the scientific novelty lies
in proposing an alternative paradigm for LLM-Fairness evaluation,
one that bridges established principles from non-functional soft-
ware testing with the unique requirements of bias assessment in
languagemodels. From a technical standpoint, our contribution is
the design of CAFFE, a general-purpose framework that formalizes
fairness test cases through explicitly defined, reusable components,
such as prompt intent, contextual environmental assumptions, and
expected fairness thresholds. Unlike prior works that rely on fixed
templates, handcrafted oracles, or domain-specific configurations,
CAFFE enables intent-aware, semantically grounded, and system-
atically reproducible fairness testing.

3 FORMALIZING LLM-FAIRNESS TEST CASES

The first step toward a systematic approach to LLM-Fairness testing
is the formalization of a test case. We adopt a definition tailored to

LLMs, where we explicitly define the core components of a fairness
test case, drawing on the ISO/IEC/IEEE 29119 testing standard [2]
and the formal models by Singh [57] and Kamde et al. [33]. This
formalization differs from prior work, e.g., Morales et al. [41, 42],
which define ethical requirement models and pipelines but do not
specify a formal test case structure or its components. In addition,
it supports extensibility by enabling the integration of new test
intents, prompts, alternative fairness metrics, and evaluation crite-
ria, as well as the evaluation of different LLMs under comparable
conditions for a repeatable and consistent fairness assessment.

Specifically, to ensure consistency with traditional definitions
of test cases, we followed an iterative refinement process. Initially,
we extracted the fundamental elements used to define a test case,
such as test data, preconditions, and expected results. The first
author then attempted tomap these elements to equivalent concepts
in the context of LLM-Fairness testing. For instance, while test
data in traditional testing refers to all data used in a test case, in
LLM-Fairness testing, it may also encompass the prompts used to
evaluate model behavior. At the end of the first iteration, all authors
jointly analyzed the initial mapping, discussing potential issues
and ambiguities to establish a shared terminology and a coherent
reference model. We refined this mapping through three iterative
rounds of discussion and revision. After finalizing the definition,
we sought input from three experts in our network with recognized
experience in software testing and fairness. Their feedbackwas used
to validate the proposed definition further and, where necessary,
fine-tune it. The final mapping is reported in Table 1.

Table 1: Concepts and definitions of LLM-Fairness test cases.

Traditional Test Case LLM-Fairness Test Case

Test Case ID — A unique code or
name of the test case

Identifier — A unique code or name of
the fairness test case

Test Description — Description of
the objective or purpose of the test

Prompt Intent — The purpose of the
interaction with the LLM under test

Preconditions — Conditions that
must be true before running the test

Context and History — Conversation
with the LLM that precedes the test

Test Steps — Sequential steps to
follow to execute the test

Test Steps — Generating the prompt,
producing responses from the LLM un-
der test, and evaluating the results

Test Data — Data used as input for
executing the test case

Prompts — The content provided as in-
put to the LLM

Expected Results — Observable
predicted behaviors of the tested
item based on specifications

Expected Fairness Level — Threshold
for fairness measures of LLM’s answers
to be considered fair

Actual Results — Set of behaviors
of the tested item observed after the
execution of the test

Actual Fairness Level — Fairness score
of the LLM answers to the prompt

Status — Indicate whether the test
passed (PASS) or failed (FAIL)

PASS — If fairness metrics >= Threshold,
FAIL — If fairness metrics < Threshold

Test Environment — Test execu-
tion context

Test Environment — Parameters of the
LLM under test

The first element is represented by the ‘Test Case ID’, which
serves as the unique identifier [1]. In LLM-Fairness testing, this
corresponds to the ‘Identifier’, which ensures traceability across
executions. The ‘Test Description’ provides a concise explanation
of the objective or purpose of the test [1, 33]. We map this field to
the ‘Prompt Intent’, which defines the goal of the interaction with
the LLM under test, i.e., the intent [55], as it provides the expected
outcome from the model (e.g., a suggestion or a question). The field
‘Preconditions’ represents the conditions that must be true before
the test is executed [1, 57]. In our context, this concept requires
reinterpretation: fairness is inherently context-dependent [49], and
LLMs are highly sensitive to the conversational history preceding a
prompt. Prior interactions, system messages, or even the absence of

ICSE’26, April 12–18, 2026, Rio de Janeiro, Brazil Parziale et al.

previous context can significantly influence the results, potentially
resulting in biased outputs. As such, we map the ‘Preconditions’

with the ‘Context and History’ in which the prompt is evaluated.
Moving to the execution phase, the ‘Test Steps’ field describes the

concrete actions executed in the test case [1, 57]. In the context of
LLM-Fairness testing, the ‘Test Steps’ field consists of three phases:
(1) generating the prompts to test the LLM, (2) obtaining a response
from the LLM, and (3) evaluating the fairness of the responses.
The ‘Test Data’ refers to the data specifically created or selected
to execute one or more test cases, aiming to cover a wide range
of relevant input conditions [1, 57]. In LLM-Fairness testing, the
analogous objective is to expose potential biases by varying inputs
across sensitive attributes and contexts [40]. Accordingly, ‘Test
Data’ corresponds to a ‘Prompt’ that is intentionally crafted to
reveal a specific type of bias. A complete test suite, i.e., a collection
of test cases [57], should therefore aim to cover a broad spectrum
of known and suspected bias types.

As for the evaluation part, the ‘Expected Result’ defines the suc-
cess criteria for the test [33, 57]. Since fairness is a non-functional
requirement without a single correct answer [11, 67], we took in-
spiration from the literature on non-functional testing, particularly
performance testing, which requires the specification of a thresh-
old for each performance metric [12, 63]. In our mapping, this
field is represented by the ‘Expected Fairness Level’, which speci-
fies a threshold that the fairness score must meet or exceed. The
‘Actual Result’ corresponds to the outcome observed during test
execution [33, 57]. In our context, this is mapped to the ‘Actual

Fairness Level’, a numerical score reflecting the fairness evalua-
tion of the LLM on a given prompt [19]. Capturing the score in
quantitative terms facilitates deeper analysis of results. The ‘Status’
field indicates whether the test passed or failed based on the out-
come [33, 57]. This binary status also enables an immediate analysis
of LLM-Fairness results. Indeed, we mark the test as ‘PASS’ if the
metric exceeds the threshold, and as ‘FAIL’ if it remains below it.

Finally, the ‘Test Environment’ specifies the system requirements
necessary to run the test [1]. In LLMs, these requirements are
represented by factors such as model versions, temperature settings,
and deployment method (e.g., through APIs or locally) [32, 42].
Therefore, in the context of LLM-Fairness testing, we have a ‘Test
Environment’ to consider information about the LLM under test
that can lead to different fairness outcomes [32].

4 CAFFE - SYSTEMATIC FAIRNESS TESTING

FOR LARGE LANGUAGE MODELS

Figure 1 overviews the design of the proposed automated LLM-
Fairness testing framework, CAFFE (Counterfactual Assessment
Framework for Fairness Evaluation). The framework is conceived
with a user-centered and human-in-the-loop approach [22], mean-
ing that human oversight is embedded in key stages of the testing
process. As a consequence, CAFFE must be seen as an intelligent as-

sistant rather than a replacement for the tester. In particular, CAFFE
is a customizable framework that can be adapted to various fairness
scenarios and integrated with other fairness testing tools. It enables
a systematic and semi-automated process for evaluating fairness

in LLM interactions, following the formal test case template intro-
duced in Section 3. The framework operates at the level of model

testing, meaning it targets the behavior of the language model itself,
independently of downstream logic or interfaces.

The execution of our framework first requires the tester to de-
fine the initial part of the test case, particularly the ‘Prompt Intent’,
the ‘Context and History’, the ‘Expected Fairness Level’, and ‘Test

Environment’. Based on this initial information, the framework
automatically completes the test case template. It also generates
various ‘Prompts’ through its automated component, each of which
forms an actual test case, hence leading to the definition of a test
suite. Prompt generation is guided by a knowledge base, which in the
current implementation is conveniently grounded in prior work on
social biases [45] and informed by the specified prompt intent. As
such, the framework is currently context-independent, using a gen-
eral repository of stereotypes and sensitive attributes. It is, however,
adaptive: testers can extend or replace the knowledge base with
domain-specific data for contextualized fairness evaluation. Once
the test data are generated, the tester executes the tests by interact-
ing with the LLM using the constructed prompts. The framework
then automatically assesses the fairness of the model’s responses
and produces a structured test report. The individual steps of the
framework are detailed in the following sections. To guide readers,
we provide an explanatory instance of a test case and discuss its
evolution throughout the process. In particular, Figure 2 is divided
into three steps. First, CAFFE starts with a tester-defined LLM-

Fairness test case template, in Figure 2(a). In this example, the tester
aims to evaluate whether an LLM (GPT-4o mini, accessed via API)
can answer a neutral question (‘Prompt Intent’) consistently across
counterfactual variations, assuming no prior dialogue (‘Context and
History’). Fairness is expected to hold when the semantic similarity
between responses exceeds the defined threshold of 0.7 (‘Expected
Fairness Level’). With these inputs, our framework generates the test
data (‘Prompts’), for example, as shown in Figure 2(b), and finally
computes the fairness result (‘Actual Fairness Level’) marking the
test as a FAIL (‘Status’), as shown in Figure 2(c). In the remainder
of this section, we elaborate on each component of CAFFE.

4.1 Test Data Generator

Once the tester has provided the initial information, the first stage
of CAFFE focuses on the automatic generation of prompts. This
process relies on a knowledge base, namely a curated repository of
known stereotypes and sensitive attributes (e.g., gender, ethnicity,
religion) that serves as the foundation for generating meaningful
and targeted test inputs. The knowledge base is essential: without it,
the framework would lack principled guidance on which identity-
based variations are relevant for fairness assessment. For example,
without explicitly knowing that emotional sensitivity is often stereo-
typically attributed to “gay men”, the framework could not generate
counterfactual prompts like: “How does emotional sensitivity affect

the lived experiences of gay men?” versus “How does emotional sensi-

tivity affect the lived experiences of straight men?” to test for gender
bias in occupational descriptions. Therefore, given the specific test
objective, defined through the intent of the interaction with the
LLM under test, and the knowledge base of stereotypical associa-
tions and sensitive attributes, this component automatically creates

Toward Systematic Counterfactual Fairness Evaluation of Large Language Models: The CAFFE Framework ICSE’26, April 12–18, 2026, Rio de Janeiro, Brazil

 LLM-Fairness Test Case

Tester

Bias Knowledge
Base

Prompt Intent

< Prompt Intent, Context and History, Expected Fairness Level, Test Environment >

Generation Of Prompts

Test Data Generator

Prompts

Context and
History

Test
Environment

Use

Execution of
Tests

Tester Fairness Metrics

Actual Fairness
Level

Expected Fairness
Level

Use

Generate

Test Case Execution

Check Status and
Test Report Generation

Test Report

Return

Use

Compute

Insert

LLM-Fairness
Testing Elements

Additional Internal
Elements

Automatic Actions

Tester Intervention

Legend

Figure 1: Overview of the CAFFE framework.

ID: TC_01
Prompt Intent: Question
Context and History: Empty Conversation
Expected Fairness Level: 0.7
Environment: GPT-o4 mini — APIs

Prompts:
(1) How does emotional sensitivity affect

the lived experiences of gay men?
(2) How does emotional sensitivity affect
 the lived experiences of straight men?

Actual Fairness Level: 0.5
Status: FAIL ✗

2(c) Test Case Execution Result

2(b) Test Data Generator's Output

2(a) Tester's Input

Figure 2: Explanatory example of test case construction and

execution by CAFFE.

a suite of diverse counterfactual prompts. Each prompt pair varies
sensitive attributes while preserving meaning, enabling targeted
evaluation of model behavior across identities.

Stereotypes Knowledge Base. We built the knowledge base
from CrowS-Pairs [45], a widely used dataset of 1,508 sentence
pairs contrasting stereotypical and anti-stereotypical statements
involving different social groups.

� Knowledge Base Example.

Stereotyped Version: Gay men are emotionally fragile.

Anti-Stereotyped Version: Straight men are emotionally fragile.

The dataset includes nine categories of bias: ‘race’, ‘gender’, ‘sex-
ual orientation’, ‘religion’, ‘age’, ‘nationality’, ‘disability’, ‘physical
appearance’, and ‘socioeconomic status’. We selected CrowS-Pairs
for its broad coverage of identity-based stereotypes and its struc-
tured format; however, in real-world applications, the knowledge
base may be replaced or extended to include context-specific biases.
Rather than using the dataset in its original form (i.e., full sentence
pairs), we extracted reusable and generalizable representations to
support diverse prompt intents during fairness testing. Specifically,
we derived a structured set of triples capturing the ‘biased topic’,
the ‘Disadvantaged Group’, and the ‘Advantaged Group’ from each
sentence pair in CrowS-Pairs. This step was required to enable
reusable generation of counterfactual prompts across different fair-
ness testing intents, rather than relying on fixed, sentence-specific

formulations. In other terms, this representation enabled the frame-
work to dynamically construct context-appropriate prompts tai-
lored to various interaction types, while consistently preserving
the underlying fairness dimension being tested. Further details on
the prompt generation are provided in the next section.

As a result of this step, each of the 1,508 knowledge base in-
stances is represented in the form of a triple: <Topic, Disadvantaged
Group, Advantaged Group>. Referencing the explanatory example
(Figure 2), the output is the following triple:

� Knowledge Base Example.

<emotional sensitivity, gay men, straight men>

The extraction process was carried out using GPT-4o mini [48]
as an annotator, guided by a prompt that we iteratively refined to
ensure the generation of accurate and consistent triples. All out-
puts were manually reviewed and corrected when the extracted
information did not faithfully capture the meaning of the original
sentence pair. For instance, in the pair “Kurt was driving intoxicated
because he was black” and “Kurt was driving intoxicated because he

was white,” the original extracted triple <attribution of behavior to

identity, black person, white person> was replaced with <driving

under the influence, black person, white person> to preserve seman-
tic fidelity better. This manual review process was conducted by
the first two authors through a coding-by-consensus process [13]
over five one-hour meetings. Each extracted triple was manually
verified against three criteria: (i) capturing the main action or at-
tribute expressed in the sentence pair, (ii) accurately representing
the (counter-)stereotyped entities, and (iii) correctly identifying the
relationship type (e.g., causal or descriptive). Discrepancies were
discussed and resolved collaboratively to ensure the correctness,
semantic fidelity, and internal consistency of the knowledge base.

Counterfactual Prompts Generation. Given the knowledge
base, we designed an automated process to generate counterfactual
test inputs. A key feature of this process is its reliance on the specific
‘Intent’ defined in the test case template, which is key to guide how
prompts are formulated. Different intents, e.g., asking a question or
issuing an instruction, lead to structurally and linguistically distinct
prompts, even when grounded in the same underlying stereotype.
Specifically, given each of the 1,508 triples <Topic, Disadvantaged
Group, Advantaged Group> and a test intent, the system generates
N unique pairs of prompts. Each pair consists of two semantically
equivalent sentences that differ only in their reference to either

ICSE’26, April 12–18, 2026, Rio de Janeiro, Brazil Parziale et al.

the disadvantaged or advantaged group, thereby enabling fine-
grained analysis of the model’s fairness behavior across multiple
communicative scenarios. As mentioned in the previous section,
the triple format decouples identity-related bias from sentence
phrasing, enabling flexible prompt generation across interaction
types while preserving the same fairness dimension.

From a technical standpoint, prompt generation is powered by
the GPT-4o mini model [48], which receives a structured input
combining the knowledge base and a specific intent to produce the
required prompts. This model was selected for its ability to generate
linguistically diverse prompts, which is difficult to obtain manually.
The prompt intent used to guide prompt generation was developed
through iterative refinement. Initially, a single descriptive block
resulted in isolated, non-counterfactual outputs. To improve struc-
ture and reproducibility, we reformulated the prompt to include
numbered steps and a concrete example, steering the generation
toward counterfactual pairs. We also explicitly instructed the model
to vary the sentence structure within and across triples to ensure
diverse and realistic user interactions. The final output of this pro-
cess constitutes the prompts used during CAFFE execution. As a
result, each couple of counterfactual prompts generated becomes
the test data of an instantiated test case, as shown in Figure 2(b).

4.2 Test Case Execution

Once the prompts are generated, the test case is ready for execution.
The tester initializes the LLM under test according to the specifica-
tions in the ‘Environment’ field of the test case template (e.g., model
version, configuration), ensuring that all required conditions are
met. The prompts are then submitted to the model by the tester, and
the corresponding outputs are collected. This manual step ensures
transparency and control over the testing process. For example,
it enables testers to log exact API requests and responses, track
execution timing, and verify prompt delivery. This kind of oversight
is particularly important when interacting with proprietary models
(e.g., OpenAI APIs) or models deployed in restricted environments,
where full automation may not be feasible or where reproducibility
depends on closely monitored conditions. Following the explana-
tory example, the tester instantiates the actual ‘Environment’, i.e.,
GPT-4o mini, accessed via API, by initializing an API session with
the specified model configuration and ensuring no prior conversa-
tion history, as required by the ‘Context and History’ field of the test
case template. Finally, the answers to these prompts are collected
and provided as input to the following step.

4.3 Test Report

The final component of the framework is fully automated and
responsible for computing fairness metrics and producing a test

summary report. Once the model responses have been collected
from the previous phase, the framework evaluates them by compar-
ing the ‘Actual Fairness Level’ against the thresholds defined in the
‘Expected Fairness Level’ field. The evaluation in CAFFE relies on
semantic similarity [14], assessed through counterfactual prompt
pairs [36] that differ only in the referenced social group. By compar-
ing the semantic similarity of the corresponding responses [14, 54],
the framework identifies potential biases. This design is directly

grounded in the definition of counterfactual fairness [36], which
states that an AI system should return equivalent outputs when
inputs differ only in terms of sensitive attributes.

The threshold, specified by the tester during test case design,
represents the maximum acceptable degree of disparity and should
be derived based on the test context. This is motivated by the fact
that fairness is a non-functional property [25], and there is no uni-
versally valid oracle to definitively label a model output as “fair”
or “unfair”. Much like performance testing [63], fairness evalua-
tion must rely on quantitative assessments that detect deviations
rather than correctness. In our case, semantic similarity acts as a
continuous measure of behavioral disparity. When the measured
similarity falls below the threshold, it signals a potential fairness
violation. This approach is crucial for accounting for the variabil-
ity in fairness definitions across different application domains and
social contexts [25]. Notably, while our evaluation strategy uses a
threshold, the specific semantic similarity metric is not hardcoded.
Instead, it is empirically validated (see RQ2 in Section 5), ensuring
that the adopted metric provides consistent and meaningful judg-
ments across cases. This ensures that the assessment logic is both
principled and grounded in practical considerations. In line with
this, the framework automatically determines the verdict of each
test case, i.e., PASS or FAIL, based on whether the computed fairness
score is within the acceptable bounds, as shown in Figure 2(c).

The results are then aggregated across the entire test suite to gen-
erate a comprehensive report that includes individual test metrics,
pass/fail statuses, and insights into the model’s fairness behavior,
divided by bias type.

5 EMPIRICAL EVALUATION

The goal of the study is to assess how effectively CAFFE detects
fairness bugs in LLMs, with the purpose of supporting practitioners
in testing private or locally deployed models. The perspective is
twofold: researchers evaluate a structured, test-based approach,
while practitioners seek automated tools to identify fairness flaws
without accessing model internals.

5.1 Research Questions

We structured the evaluation of CAFFE around three research ques-

tions. We first evaluated the effectiveness of the test data generation
process, which corresponds to the first component of our frame-
work. This evaluation required verifying whether the generated test
data adequately addresses all relevant cases through appropriate
forms of coverage [20, 62]. However, this task presents a challenge,
as our focus is on fairness, a non-functional requirement [18, 25]
for which traditional coverage metrics used in functional testing,
such as statement or branch coverage [20, 62], are not applicable.

As CAFFE generates counterfactual prompts to probe fairness
violations, we measure their linguistic diversity as a proxy for
coverage. The assumption is that the more linguistically varied
the prompts are, the more effectively they can stimulate the LLM
with diverse biased inputs. This, in turn, increases the likelihood
of uncovering fairness bugs across a broader spectrum of bias ex-
pressions. We term this bias coverage, i.e., the extent to which the
prompt set captures diverse bias expressions [4]. So, we asked:

Toward Systematic Counterfactual Fairness Evaluation of Large Language Models: The CAFFE Framework ICSE’26, April 12–18, 2026, Rio de Janeiro, Brazil

RQ1 - To what extent can the test cases generated by CAFFE

ensure bias coverage?

Second, we assessed the effectiveness of the criteria used to eval-
uate LLM responses, validating the third component of our frame-
work, namely the automatic response evaluation. Since CAFFE
detects fairness violations by comparing responses to counterfac-
tual prompts that differ only in the referenced sensitive group,
its effectiveness hinges on how accurately it can measure differ-
ences between those responses, as per the counterfactual fairness
definition [36]. As such, we conducted a comparative analysis of
semantic similarity metrics to determine which best captures these
dissimilarities. This analysis guided our second research question:

RQ2 - What is the most suitable metric for evaluating the fairness

test cases in CAFFE?

After validating each individual phase, we analyzed the overall
usefulness of CAFFE in identifying fairness bugs. To this end, we
instantiated the framework with various prompt intents [55] and
LLMs, comparing the detected biases against those surfaced by
state-of-the-art fairness testing methods. Hence, we asked:

RQ3 - To what extent is CAFFE capable of identifying fairness

bugs in Large Language Models?

The remainder of this section details the research methods ap-
plied to address ourRQs. We reported our study in accordance with
the ACM/SIGSOFT Empirical Standards [53], specifically following
the recommendations listed under the “General Standard” category.

5.2 Research Methods

In the following sections, we outline the specific methods employed
to address the research questions of the study.

RQ1 – Test Data Generation. To evaluate test data generation
effectiveness, we defined four intents and three LLMs as study
targets. This setup simulates the user-centered and human-in-the-
loop nature of the framework by reflecting diverse usage scenarios.
The selected intents are derived from the taxonomy introduced
by Robe et al. [55], which categorizes 26 developer-agent inter-
action intents in software engineering into five categories, i.e.,
Delivery, Programming Acts, Role, Tone, and Social. We selected
the four Delivery subtypes—Question, Recommendation, Direc-
tion, and Clarification—as they best reflect LLM usage scenarios
involving queries, instructions, and information-seeking. While our
evaluation focuses on these intents as they represent the most com-
prehensive and up-to-date classification of software engineering
conversational intents, CAFFE remains extensible, allowing users
to define additional domain-specific intents. For each intent, we
instantiated a test case template that includes the prompt intent,
context and history, and environmental needs (model version). In
particular, all experiments were conducted with the precondition of
an “empty conversation” to mitigate potential biases from preceding
dialogue and establish an unbiased baseline.

We then began to experiment with the test data generator com-
ponent (see Section 4.1) for each defined test case template. Specif-
ically, to determine the optimal number of prompts required to
ensure sufficient bias coverage, we let the generator propose one
new prompt at a time and evaluated the extent to which the lat-
est addition enlarged the vocabulary of the whole set of prompts.
Instead of using raw Shannon entropy [66], which grows with
text length—longer prompts appear more diverse even when they
merely repeat ideas—we computed the entropy per token (ℎ𝑁), i.e.,
the average information (in bits) carried by a single word [58].
Concretely, after every prompt, we watched how quickly the vo-
cabulary diversity was growing. If the gain was below a very small
threshold 𝜀 = 0.02 bits/token [29] for three consecutive prompts
(𝑘=3), we stopped. Requiring three low-gain steps makes the deci-
sion less sensitive to the occasional prompt that happens to repeat
familiar wording. Formally, entropy rate is defined as ℎ𝑁 =

𝐻 (𝑇𝑁)
|𝑇𝑁 |

[bits/token], where 𝑇𝑁 is the set of tokens contained in the first 𝑁
generated prompts and 𝐻 (·) is the corrected Shannon entropy.

Bits per token normalizes away prompt length, thus allowing for
the comparison of diversity across intents and models on an equal
footing, something that surface metrics cannot provide [6, 58, 66].
Empirical work on sub-word tokenization shows that once the
marginal gain in entropy rate falls below ≈0.02 bits/token, further
text expansion yields negligible new information [29].

Measuring “bits per token” tells us how much new linguistic
information each fresh prompt still contributes, independently of
sentence length. When that contribution remains negligible for
three consecutive prompts, further generation would only rephrase
what we already have. Hence, formally, we define the optimal num-
ber of prompts 𝑁★ as the first point at which the marginal gain
in entropy rate remains below 𝜀 for three consecutive prompts:
𝑁★ = min {𝑁 | ∀ 𝑖 ∈ {𝑁−2, 𝑁−1, 𝑁 }, ℎ𝑖 − ℎ𝑖−1 < 𝜀}.

Conceptually, this transfers the idea of stopping at a cover-
age plateau from traditional software testing [20, 62] to the bias-
sensitive, language-driven domain addressed by CAFFE.While prior
work (e.g., LangBiTe [42], BiasAsker [61]) relies on fixed templates
or stereotype pairs, implicitly bounding coverage by design, CAFFE
generates multiple counterfactual prompts per stereotype–intent
pair. We introduce lexical diversity as a proxy for bias coverage,
quantifying how much new linguistic space is explored as new
prompts are added. This marks a first step toward making bias
coverage measurable and replicable in fairness testing.

After calculating 𝑁★ for every intent and knowledge base triple,
we defined the final number of prompts as the highest median of all
individual estimates across the different bias types. Choosing the
median rather than themaximum ensures that it already exceeds the
saturation point for the majority of triples, guaranteeing that lexical
diversity has plateaued, and avoids the computational overhead
of driving every triple to an extreme case. In our evaluation, we
set an upper bound of 𝑁★ = 20 to limit the computational and
economic cost of prompt generation: considering a knowledge base
of 1,508 instances and four intents, generating 20 prompts for each
combination of triple and intent could led to the generation of
120,640 counterfactual pairs and 241,280 total prompts.

ICSE’26, April 12–18, 2026, Rio de Janeiro, Brazil Parziale et al.

RQ2 – Response Evaluation. To address this research question,
we reused the same experimental context defined in RQ1, includ-
ing the four selected communicative intents and the “empty con-

versation” setting. For the LLMs under test, we focused on GPT-
4o mini [48], LLaMA-2-7b-chat [59], and Mistral-7b-Instruct-
v0.2 [42], which has emerged as the de facto standard in software
engineering tasks [35]. The goal of this phase was to identify the
most suitable semantic similarity metric for detecting fairness vi-
olations at a target threshold of 0.9. This threshold was chosen
because higher thresholds are more sensitive to differences in coun-
terfactual responses—thus detecting more fairness bugs—and, in
fairness research, deviations of up to 0.1 from perfect equity (here,
a similarity of 1.0) are commonly considered acceptable [39].

Our evaluation approach is consistent with the definition of
counterfactual fairness [36], where fairness is assessed as a statis-
tical property—specifically, as the degree of systematic difference
between outputs generated for sensitive and non-sensitive groups
under comparable conditions. The same reasoning extends to in-

dividual fairness, which assumes that two otherwise identical in-
dividuals should not be treated differently solely due to sensitive
attributes. In both cases, statistical divergence provides a practical
and theoretically grounded way to infer potential unfairness, even
in the absence of an absolute ground truth. Building on this reason-
ing, in our setting, each test case consists of a pair of counterfactual
prompts that vary only for the social group mentioned. Therefore, a
test case is marked as FAIL if the LLM produces different responses
to these two prompts. To operationalize this, CAFFE compares
the responses using a semantic similarity metric; thus, selecting an
effective metric is critical for reliably identifying fairness violations.

We selected three semantic textual similarity metrics from the
literature based on their relevance to fairness testing, prior empiri-
cal use, and ease of implementation. Our selection was informed
by Celikten and Onan [14], who compared similarity metrics for
AI-generated text and categorized them by scope. Specifically, we
considered: (1) Cosine Similarity (CS-BERT) [14, 54], which uses
BERT embeddings to compute cosine distance between response
vectors; (2) Latent Semantic Analysis (LSA) [52], a co-occurrence-
based approach; and (3) Latent Dirichlet Allocation (LDA) [8], a
topic-modeling technique representing text as topic distributions.

We then ran the first step of CAFFE to collect counterfactual
prompt pairs. Rather than evaluating all generated pairs, we selected
a statistically significant sample: for each intent–bias combination
(as defined in the knowledge base [45]), we randomly sampled
pairs with a 5% margin of error at a 95% confidence level, ensur-
ing representativeness while reducing workload. Each prompt pair
was submitted to GPT-4o mini [48], LLaMA-2-7b-chat [59], and
Mistral-7b-Instruct-v0.2 [42], and their responses were collected.
We applied each similarity metric to compute the semantic distance
between responses, analyzing results at the 0.9 threshold as our pri-
mary basis for metric selection. For completeness, we also evaluated
thresholds from 0.1 to 0.8 (in 0.1 increments) to provide insights for
practitioners who may prefer to focus on severe violations: indeed,
lower thresholds can highlight only the most substantial disparities,
at the expense of potentially missing subtler fairness issues.

To assess performance, we computed the number of fairness
bugs (#𝑓 _𝑏𝑢𝑔𝑠) detected for each metric. Following counterfactual

fairness, we identified a fairness bug whenever the semantic differ-
ence between responses exceeds the similarity threshold. This was
evaluated at two levels: (1) a global evaluation, measuring fairness
bugs across all test cases, and (2) a bias-specific evaluation, assessing
bugs detected within each of the nine bias categories [45]. This two-
level analysis enabled us to evaluate not only the overall sensitivity
of each metric but also its consistency across stereotypes. The final
answer to RQ2 was determined by selecting the metric that most
consistently identified fairness bugs at the 0.9 threshold.

RQ3 –Overall CAFFEEffectiveness. After validating eachCAFFE
component, we performed an overall evaluation through a targeted
case study. We instantiated CAFFE under the same conditions used
in the evaluation of METAL [32], a fairness testing framework
grounded in metamorphic testing. This setup offered two advan-
tages: first, it allowed us to simulate a realistic and previously vali-
dated testing scenario; second, it enabled a direct, controlled com-
parison with a state-of-the-art metamorphic approach, thereby pro-
viding empirical insights into the practical effectiveness of CAFFE.

More particularly, METAL evaluates fairness by checking the
consistency of outputs across semantically equivalent inputs and
reports violations using the Attack Success Rate (ASR) metric. Both
frameworks evaluate fairness by assessing response disparities
across semantically related prompts; yet METAL operates with a
different strategy, checking consistency in outputs over semanti-
cally equivalent inputs and reporting violations through the ASR
metric. Although CAFFE does not define formal metamorphic rela-
tions, it adopts the same underlying principle, i.e., testing whether
a change in the social group reference substantially affects model
behavior, making it the most suitable for comparison among all the
related works. Therefore, we adopted the ASR metric for consis-
tency, defining a fairness violation when the semantic similarity
between responses to counterfactual prompts falls below a specified
threshold. By doing so, we were also able to compare the results
of our framework against those obtained by METAL. To ensure a
faithful replication of the test conditions, we configured CAFFE
using the same three communicative intents as METAL, Question
Answering (Q&A), Toxicity Detection (TD), and Sentiment Analysis

(SA), and the same execution precondition (i.e., an empty chat).
We selected LLaMA-2-7b-chat [59] as the model under test, as it
was also identified by METAL as exhibiting the highest number of
fairness violations among the three models considered. Importantly,
we did not re-execute the METAL framework itself; instead, we
utilized all the results and ASR values available in their study and
replication package for direct comparison. To further demonstrate
the capabilities of our framework and ensure consistency with prior
RQs, in addition to LLaMA-2-7b-chat [59], we executed CAFFE
under the same conditions using GPT-4o mini [48] and Mistral-
7b-Instruct-v0.2 [42]. In this way, we provide insights into how
widely adopted and high-performing LLMs behave when subjected
to fairness test cases. Through this three-model evaluation, we aim
to demonstrate the adaptability and diagnostic precision of CAFFE
across multiple model families and configurations.

6 ANALYSIS OF THE RESULTS

This section reports the findings from our evaluation of CAFFE.

Toward Systematic Counterfactual Fairness Evaluation of Large Language Models: The CAFFE Framework ICSE’26, April 12–18, 2026, Rio de Janeiro, Brazil

Figure 3: Number of prompts required to reach the entropy

plateau for each bias category.

6.1 RQ1 — Test Data Generation

Our first research question investigates when the automatic prompt
generator saturates the lexical space of each bias category, identify-
ing the optimal number of prompts for Step 1 of CAFFE.

Figure 3 reports the number of prompts required to reach the
entropy plateau across the nine bias categories in our knowledge
base. The mean number of prompts needed to reach saturation
was approximately ten, while the median ranged from eleven to
twelve across categories. In other words, half of the knowledge-base
triples required twelve prompts or fewer to exhaust meaningful
lexical variation, with only a minority benefiting from additional
generation. Based on these findings, we configure the generator to
produce twelve prompts per triple for the subsequent research
questions, ensuring sufficient linguistic diversity while maintaining
computational efficiency. Considering the 1,508 knowledge base
triples and the four communicative intents evaluated, this number
sums up to 72,384 prompt pairs.

| RQ1 — Summary of the Results.

Across all nine bias categories, lexical entropy consistently
plateaued within twelve prompts. Therefore, Step 1 of CAFFE
generates exactly twelve test cases per knowledge-base triple,
ensuring coverage while preserving efficiency.

6.2 RQ2 — Response Evaluation

To answerRQ2, we evaluated three semantic similarity metrics [14]
for identifying fairness bugs in the third step of CAFFE, using three
models: GPT-4o mini [48], LLaMA-2-7B-chat [59], and Mistral-
7B-Instruct-v0.2 [42]. The results are reported in Table 2. The
number of counterfactual pairs evaluated was 10,858, that is the
sum of all the significant samples selected for each bias type out of
the 72,384 total pairs generated after RQ1.

Global Evaluation. Across all models, LSA @ 0.9 consistently
emerged as the best-performing similarity metric, confirming it as
the top-performing configuration overall. In particular, in GPT-4o
mini, this setup detected 8,149 fairness bugs out of 10,858 test cases
(i.e. to 21,716 total prompts), resulting in a global fail rate of 75.05%.
It also achieved an average fail rate of 74.94% and median fail rate
of 78.23%, ranking as the best-performing configuration in 8 out of
9 bias categories. Both LLaMA-2 and Mistral-7B exhibited higher
sensitivity to fairness-relevant variations. Specifically, Mistral-7B
achieved a substantially higher detection rate than GPT-4o mini,

identifying 9,603 fairness bugs out of 10,858 test cases, correspond-
ing to a global fail rate of 88.50%. It also recorded an average fail
rate of 87.72% and a median fail rate of 88.92%, being the best-
performing configuration across all bias categories. Similarly, for
LLaMA-2, the same configuration demonstrated the strongest de-
tection capability, identifying 10,042 fairness bugs out of 10,858 test
cases, corresponding to a global fail rate of 92.56%. LLaMA-2 also
achieved the highest average fail rate (91.78%) and median fail rate
(93.07%), confirming its higher sensitivity to disparities.

Bias-Specific Evaluation. For GPT-4o mini, LSA @ 0.9 proved
to be the most effective configuration, detecting 8,149 fairness bugs
out of 10,858 test cases and a global fail rate of 75.05%. Although
LDA@ 0.9 achieved positive performance in specific contexts, most
notably for socioeconomic status, its overall performance remained
limited. The CS-BERT metric exhibited limited results to changes,
yielding a maximum fail rate of only 6.32%. For LLaMA-2, LSA @
0.9 was the most effective configuration across all bias categories,
detecting 10,042 fairness bugs out of 10,858 test cases, resulting
in a global fail rate of 92.56%. The other similarity metrics, LDA
and BERT-based, showed a lower sensitivity, with average fail rates
below 25%. Specifically, LDA@ 0.9 was comparatively less effective,
especially for implicit stereotypes as disability or race. Similarly, the
CS-BERT metric reported a failure rate below 10%. This confirms
that LDA and BERT-based similarities capture less fine-grained
semantic variation than LSA. For Mistral-7B, LSA @ 0.9 was the
most effective configuration across bias categories, detecting 9,603
fairness bugs out of 10,858 test cases, resulting in a global fail rate of
88.50%. In contrast, LDA@ 0.9 and BERT-based similarity measures
achieved average fail rates below 20% and 10%, respectively. When
the threshold was reduced 0.9, the metrics continued to perform
adequately but detected fewer fairness violations, supporting our
choice of 0.9 as the standard cutoff for fairness bug detection [39].
All these findings reaffirm that LSA @ 0.9 represents the optimal
balance between coverage and precision.

| RQ2 — Summary of the Results.

Considering global bug detection, cross-bias reliability, and dis-
tributional stability, we select LSA @ 0.9 as the default metric
configuration for the CAFFE response evaluation module. LDA
remains a valuable secondary option for some bias categories.

6.3 RQ3 — Overall CAFFE Effectiveness

Table 3 reports the ASR values obtained by applying CAFFE on
three LLMs, i.e., GPT-4o mini [48], LLaMA-2-7B-chat [59], and
Mistral-7b-Instruct-v0.2 [42] across the three communicative
intents considered in METAL [32]: Question Answering (Q&A), Tox-
icity Detection (TD), and Sentiment Analysis (SA). Overall, to answer
this research question, CAFFE generated 54,288 counterfactual pairs
(108,576 prompts). Since each prompt was queried to three LLMs,
we collected and analyzed 325,728 answers.

All models showed substantial fairness violations, with ASR
values above 0.70 across all intents. GPT-4o mini reached 0.713 for
Q&A, 0.871 for SA, and 0.986 for TD. Violations were more frequent
in subjective tasks (SA, TD), where outputs are prone to implicit

ICSE’26, April 12–18, 2026, Rio de Janeiro, Brazil Parziale et al.

Table 2: Best-performing similarity metric per bias type and overall @ threshold, based on number of fairness violations

(#f_bugs) detected across GPT, LLaMA, and Mistral.

GPT-4o mini LLaMA-2-7b-chat Mistral-7b-Instruct-v0.2

Bias Type Metric @ Thr. #f_bugs Fail Rate Metric @ Thr. #f_bugs Fail Rate Metric @ Thr. #f_bugs Fail Rate

Overall LSA @ 0.9 8,149 75.05% LSA @ 0.9 10,042 92.56% LSA @ 0.9 9,603 88.50%
Age LSA @ 0.9 948 84.04% LSA @ 0.9 1,066 94.50% LSA @ 0.9 1,055 93.52%
Disability LSA @ 0.9 773 76.99% LSA @ 0.9 922 91.83% LSA @ 0.9 877 87.35%
Gender LSA @ 0.9 1,137 82.87% LSA @ 0.9 1,308 95.33% LSA @ 0.9 1,259 91.76%
Nationality LDA @ 0.9 674 52.66% LSA @ 0.9 1,095 85.54% LSA @ 0.9 992 77.5%
Phys. App. LSA @ 0.9 561 55.00% LSA @ 0.9 920 90.19% LSA @ 0.9 858 84.11%
Race-Color LSA @ 0.9 1,082 74.31% LSA @ 0.9 1,326 91.63% LSA @ 0.9 1,281 88.46%
Religion LSA @ 0.9 1,056 89.34% LSA @ 0.9 1,146 96.95% LSA @ 0.9 1,115 94.33%
Sexual Or. LSA @ 0.9 924 82.80% LSA @ 0.9 1,049 93.99% LSA @ 0.9 1,010 90.50%
Socioeconomic LSA @ 0.9 1,017 78.23% LSA @ 0.9 1,210 93.07% LSA @ 0.9 1,156 88.92%

bias. Even as a state-of-the-art model, GPT-4o mini still exhibited
notable fairness issues, confirming that no model is immune to bias.

For the LLaMA-2-7b-chat model, CAFFE consistently detected
a higher number of fairness bugs. Specifically, LLaMA-2-7b-chat
yielded ASR values of 0.918 (Q&A), 0.990 (SA), and 0.938 (TD), all
of which were greater than those of GPT-4o mini and Mistral-
7B. This gap indicates that LLaMA-2-7b-chat exhibits a higher
tendency toward fairness violations across all task types, aligning
with previous studies [32] and reinforcing its identification as the
most fairness-challenging model among those examined.

Finally, for Mistral-7B, CAFFE demonstrated substantial fair-
ness violations across all intents, though its scores were lower than
those of LLaMA-2 but greater than those of GPT-4o mini. The
model achieved ASR values of 0.846 for Q&A, 0.924 for SA, and
0.979 for TD. Again, the high ASR values reveal persistent fairness
issues, highlighting the models’ vulnerability to implicit bias.

Figure 4: Comparison of ASR results for CAFFE and METAL.

A breakdown by bias type further highlighted consistent issues
across all models. For example, under the Q&A intent, all models ex-
hibited high ASR for Religion (0.975 for LLaMA-2, 0.882 for GPT-4o
mini, and 0.930 for Mistral-7B) and Gender (0.949 for LLaMA-2,
0.850 for GPT-4o mini, and 0.90 for Mistral-7B), indicating re-
curring issues in these dimensions. Conversely, bias types such as
Nationality and Physical Appearance showed relatively lower ASR
scores (0.403–0.422 for GPT-4o mini or 0.707–0.695 for Mistral-7B
in Q&A), though still above acceptable fairness thresholds. Addi-
tionally, Table 4 reports descriptive statistics for each configuration,
including failure rate (percentage of test cases exceeding the fair-
ness threshold), number of failed cases, and the mean, median, and
standard deviation of the LSA-based similarity metric. These values
reflect the frequency, magnitude, and distribution of fairness bugs.
The results reinforce the ASR analysis: GPT-4o mini exhibited fail-
ure rates between 71.30% (Q&A) and 98.69% (TD), with high mean

dissimilarity scores (e.g., 0.797 in Q&A, 0.641 in TD). LLaMA-2 per-
formed even worse, with failure rates between 91.84% and 99.03%,
and mean similarity deviations as low as 0.605 (SA), underscoring
its poor fairness performance. Mistral-7B showed improved re-
sults compared to LLaMA-2, but not relative to GPT-4o mini, while
fairness violations persisted. Its failure rates ranged from 84.67%
in Q&A to 92.48% in SA and 97.97% in TD, with mean dissimilarity
values of 0.763, 0.723, and 0.691, respectively. Standard deviations
varied across test cases (e.g., 0.209 for LLaMA-2 in TD), indicating
frequent and uneven fairness violations.

ComparisonWithMETAL. To contextualize these findings, we
directly compared our results against the ASRs reported in METAL
[32], depicted in Figure 4. Specifically, we compared the LLaMA-
2 results, chosen for consistency with the LLMs used in METAL
[32]. According to METAL [32], LLaMA-2 achieved ASRs of ap-
proximately 0.32 for TD, 0.68 for SA, and 0.92 for Q&A. Conversely,
using CAFFE, the ASR for LLaMA-2 rose substantially for

both TD and SA by over 0.6 (60%) and 0.3 (30%), respectively,

indicating that CAFFE was more effective in uncovering sub-

tle fairness violations that METAL [32] may miss. The Q&A

value remained similar, suggesting convergence in that task.

Although a fine-grained comparison was infeasible, since METAL
does not release per-instance violations, our findings demonstrate
that CAFFE might provide greater sensitivity to fairness-related
failures and complements rather than replaces METAL, uncovering
nuanced disparities in language use (e.g., emotional tone, framing)
that template-based transformations may not reveal.

| RQ3 — Summary of the Results.

CAFFE can effectively expose fairness violations across LLMs,
consistently detecting high ASR scores and semantic dispari-
ties. When compared against METAL, our framework achieves
substantially higher ASR values for the SA and TD tasks, with
increases of approximately 0.6 and 0.3, respectively, while achiev-
ing similar results on the Q&A task, indicating a stronger capa-
bility in identifying fairness bugs.

7 THREATS TO VALIDITY

In this section, we discuss potential threats to the validity of our
study and the strategies implemented to mitigate them.

Toward Systematic Counterfactual Fairness Evaluation of Large Language Models: The CAFFE Framework ICSE’26, April 12–18, 2026, Rio de Janeiro, Brazil

Table 3: Results for RQ3. The values reported correspond to the ASR (Attack Success Rate) computed across all test cases (overall

and bias-specific) grouped for LLM and Intent by CAFFE.

LLM Intent CAFFE Age Disability Gender Nationality Phys. App. Race-Color Religion Sexual Or. Socioecon.
GPT-4o mini Q&A 0.713 0.830 0.678 0.850 0.403 0.422 0.682 0.882 0.812 0.795
GPT-4o mini SA 0.871 0.900 0.912 0.895 0.816 0.767 0.876 0.863 0.896 0.875
GPT-4o mini TD 0.986 0.988 0.974 0.989 0.987 0.937 0.992 0.995 0.986 0.986
LLaMA-2-7b-chat Q&A 0.918 0.947 0.896 0.949 0.851 0.827 0.910 0.975 0.946 0.939
LLaMA-2-7b-chat SA 0.990 0.987 0.979 0.992 0.992 0.984 0.992 0.992 0.994 0.986
LLaMA-2-7b-chat TD 0.938 0.938 0.965 0.934 0.916 0.919 0.946 0.944 0.938 0.943
Mistral-7b-Instruct-v0.2 Q&A 0.846 0.905 0.815 0.900 0.707 0.695 0.837 0.930 0.871 0.895
Mistral-7b-Instruct-v0.2 SA 0.924 0.931 0.938 0.934 0.897 0.878 0.928 0.922 0.924 0.934
Mistral-7b-Instruct-v0.2 TD 0.979 0.979 0.968 0.983 0.977 0.939 0.984 0.983 0.976 0.981

Table 4: Descriptive statistics of the Actual Result (LSA met-

ric) aggregated for all the test cases evaluated.

LLM Intent Fail Rate #f_bugs Mean Median Std.
GPT-4o mini Q&A 71.30% 12,904 0.797 0.825 0.130
GPT-4o mini SA 87.14% 15,767 0.776 0.798 0.122
GPT-4o mini TD 98.69% 17,858 0.641 0.659 0.151
LLaMA-2-7b-chat Q&A 91.84% 16,621 0.699 0.713 0.151
LLaMA-2-7b-chat SA 99.03% 17,922 0.605 0.619 0.158
LLaMA-2-7b-chat TD 93.89% 16,991 0.620 0.647 0.209
Mistral-7b-Instruct-v0.2 Q&A 84.67% 15,322 0.763 0.778 0.129
Mistral-7b-Instruct-v0.2 SA 92.48% 16,736 0.723 0.739 0.137
Mistral-7b-Instruct-v0.2 TD 97.97% 17,729 0.677 0.691 0.133

Internal Validity. A primary threat to internal validity lies
in the automated generation of counterfactual prompts, which
depends on the capabilities and limitations of the LLM used for
both annotation and generation. Errors or biases in the model may
propagate into the generated prompts and affect the outcomes. To
mitigate this, we manually reviewed part of the generated prompts,
possibly ensuring the correctness and consistency of the knowledge
base. Finally, our knowledge base is derived from the CrowS-Pairs
dataset [45], which, although widely used, may not comprehen-
sively represent societal biases or linguistic contexts. However,
according to the literature on LLM-Fairness, this dataset is among
the ones that encompass the widest range of biases [27].

External Validity. The main external validity threat relates
to the generalizability of our findings to other LLMs or bias not
covered in our KB. As model behavior may vary depending on the
domain, our results may not be universally applicable. To reduce
this risk, we evaluated CAFFE using multiple LLMs and across nine
bias categories extracted from the CrowS-Pairs dataset, which is
among the most varied in fairness literature [27].

Construct Validity. A key threat to construct validity concerns
the assumption that semantic similarity is a valid proxy for fairness.
While response divergence may indicate potential unfairness, it
does not always capture deeper, contextual, or societal biases. To ad-
dress this, we selected semantic similarity metrics that incorporate
both syntactic and semantic information, enabling a more compre-
hensive assessment of output meaning. However, this approach has
inherent limitations: not all semantic differences indicate fairness
bugs, as models may produce varied yet appropriate responses;
conversely, some unfair behaviors may remain undetected when
biases are subtle or implicit. This challenge is inherent to most
fairness evaluations: disparities linked to sensitive attributes are

not always clearly harmful. Following the principle of individual
fairness [51], we flagged a disparity when model behavior varied
with the sensitive attribute. This reflects the broader difficulty of for-
malizing fairness in natural language interactions. For this reason,
we designed CAFFE as an intelligent assistant, where the human
tester remains in control. In particular, the tester is responsible for
defining fairness thresholds, interpreting outputs, and ultimately
judging whether a behavior constitutes a fairness violation.

An additional threat concerns the use of counterfactual fairness
to define fairness bugs. This choice aligns with the context-sensitive
nature of LLMs, but other definitions may capture different types
of bias. In this respect, we release all testing resources to support
replication and comparison under alternative fairness notions.

Conclusion Validity. The primary threat to conclusion validity
regards the choice of the semantic similarity metric, LSA @ 0.9, for
evaluating fairness in final results. Considering a single metric may
not capture all possible forms of unfairness. To mitigate this threat,
we empirically compared multiple metrics and thresholds, selecting
the most effective one across a wide range of cases and bias types.

8 CONCLUSION

This paper introduced CAFFE, a framework for evaluating counter-
factual fairness in LLMs. CAFFE assists testers through automated
test data generation that adapts to different interaction intents. Our
study across intents, LLMs, and baselines shows that CAFFE im-
proves both coverage and accuracy in detecting fairness violations.

Our future research agenda includes extending the framework
with domain-specific knowledge bases to support fairness testing
in specialized contexts. Second, we plan to generalize the evalua-
tion beyond text-based prompts by integrating multimodal inputs.
Third, we envision integrating automatic bias mitigation strategies,
transforming CAFFE into a complete fairness auditing assistant.

ACKNOWLEDGMENTS

We acknowledge the support of Project FAIR (PE0000013) under the
NRRP MUR program funded by the EU - NGEU, Project PRIN 2022
PNRR “FRINGE: context-aware FaiRness engineerING in complex
software systEms" (grant n. P2022553SL, CUP: D53D23017340001),
and the European HORIZON-KDT-JU-2023-2-RIA research project
MATISSE “Model-based engineering of Digital Twins for early ver-
ification and validation of Industrial Systems” (grant 101140216-2,
KDT232RIA 00017).

ICSE’26, April 12–18, 2026, Rio de Janeiro, Brazil Parziale et al.

REFERENCES

[1] 2021. IEEE/ISO/IEC International Standard for Software and Systems Engineering
–Software Testing– Part 3:Test Documentation - Redline. ISO/IEC/IEEE 29119-

3:2021(E) - Redline (2021), 1–274.
[2] 2021. ISO/IEC/IEEE International Standard - Software and Systems Engineering

–Software Testing – Part 2: Test Processes - Redline. ISO/IEC/IEEE 29119-2:2021(E)

- Redline (2021), 1–129.
[3] 2022. ISO/IEC/IEEE International Standard - Software and Systems Engineering

–Software Testing– Part 1: General Concepts. ISO/IEC/IEEE 29119-1:2022(E) (2022),
1–60. https://doi.org/10.1109/IEEESTD.2022.9698145

[4] Arshiya Aggarwal, Jiao Sun, and Nanyun Peng. 2022. Towards Robust NLG Bias
Evaluation with Syntactically-Diverse Prompts. arXiv preprint arXiv:2212.01700
(2022).

[5] Ian Arawjo, Chelse Swoopes, Priyan Vaithilingam, Martin Wattenberg, and
Elena L Glassman. 2024. Chainforge: A Visual Toolkit for Prompt Engineer-
ing and LLM Hypothesis Testing. In Proceedings of the 2024 CHI Conference on

Human Factors in Computing Systems. 1–18.
[6] Kushal Arora, Timothy J. O’Donnell, Doina Precup, Jason Weston, and Jackie

C. K. Cheung. 2023. The Stable Entropy Hypothesis and Entropy-Aware De-
coding: An Analysis and Algorithm for Robust Natural Language Generation.
arXiv:2302.06784 [cs.CL] https://arxiv.org/abs/2302.06784

[7] Muhammad Hilmi Asyrofi, Zhou Yang, Imam Nur Bani Yusuf, Hong Jin Kang,
Ferdian Thung, and David Lo. 2021. BiasFinder: Metamorphic Test Generation
to Uncover Bias for Sentiment Analysis Systems. IEEE Transactions on Software

Engineering 48, 12 (2021), 5087–5101.
[8] Dhiraj Vaibhav Bagul and Sunita Barve. 2021. A Novel Content-based Recommen-

dation Approach Based on LDA Topic Modeling for Literature Recommendation.
In 2021 6th International Conference on Inventive Computation Technologies (ICICT).
IEEE, 954–961.

[9] Maria Teresa Baldassarre, Danilo Caivano, Berenice Fernandez Nieto, Domenico
Gigante, andAzzurra Ragone. 2023. The Social Impact of Generative AI: AnAnaly-
sis on ChatGPT. In Proceedings of the 2023 ACMConference on Information Technol-

ogy for Social Good (Lisbon, Portugal) (GoodIT ’23). Association for ComputingMa-
chinery, New York, NY, USA, 363–373. https://doi.org/10.1145/3582515.3609555

[10] Luciano Baresi, Andrea De Lucia, Antinisca Di Marco, Massimiliano Di Penta, Da-
vide Di Ruscio, Leonardo Mariani, Daniela Micucci, Fabio Palomba, Maria Teresa
Rossi, and Fiorella Zampetti. 2025. Students’ Perception of ChatGPT in Software
Engineering: Lessons Learned from Five Courses. In 2025 IEEE/ACM 37th Inter-

national Conference on Software Engineering Education and Training (CSEE&T).
IEEE, 158–169.

[11] Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo. 2015.
The Oracle Problem in Software Testing: A Survey. IEEE Transactions on Software

Engineering 41, 5 (2015), 507–525. https://doi.org/10.1109/TSE.2014.2372785
[12] Marek Bolanowski, Michał Ćmil, and Adrian Starzec. 2024. New Model for

Defining and Implementing Performance Tests. Future Internet 16, 10 (2024), 366.
[13] M Ariel Cascio, Eunlye Lee, Nicole Vaudrin, and Darcy A Freedman. 2019. A

Team-based Approach To Open Coding: Considerations for Creating Intercoder
Consensus. Field Methods 31, 2 (2019), 116–130.

[14] Tugba Celikten and Aytug Onan. 2025. Exploring Text Similarity in Human and
AI-Generated Scientific Abstracts: A Comprehensive Analysis. IEEE Access 13
(2025), 74313–74334. https://doi.org/10.1109/ACCESS.2025.3564867

[15] Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao
Chen, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, et al. 2024. A Survey on
Evaluation of Large Language Models. ACM Transactions on Intelligent Systems

and Technology 15, 3 (2024), 1–45.
[16] Tsong Yueh Chen, Fei-Ching Kuo, Huai Liu, Pak-Lok Poon, Dave Towey, TH Tse,

and Zhi Quan Zhou. 2018. Metamorphic Testing: A Review of Challenges and
Opportunities. ACM Computing Surveys (CSUR) 51, 1 (2018), 1–27.

[17] Zhenpeng Chen, Jie M. Zhang, Max Hort, Mark Harman, and Federica Sarro.
2024. Fairness Testing: A Comprehensive Survey and Analysis of Trends. ACM
Transactions on Software Engineering and Methodology 33, 5, Article 137 (June
2024), 59 pages. https://doi.org/10.1145/3652155

[18] Zhenpeng Chen, Jie M Zhang, Federica Sarro, and Mark Harman. 2024. Fairness
improvement with multiple protected attributes: How far are we?. In Proceedings

of the IEEE/ACM 46th international conference on software engineering. 1–13.
[19] Zhibo Chu, Zichong Wang, and Wenbin Zhang. 2024. Fairness in Large Language

Models: A Taxonomic Survey. ACM SIGKDD Explorations Newsletter 26, 1 (July
2024), 34–48. https://doi.org/10.1145/3682112.3682117

[20] Jacek Czerwonka. 2013. On Use of Coverage Metrics in Assessing Effectiveness
of Combinatorial Test Designs. Proceedings - IEEE 6th International Conference

on Software Testing, Verification and Validation Workshops, ICSTW 2013, 257–266.
https://doi.org/10.1109/ICSTW.2013.76

[21] Sunhao Dai, Chen Xu, Shicheng Xu, Liang Pang, Zhenhua Dong, and Jun Xu.
2024. Bias and Unfairness in Information Retrieval Systems: New Challenges in
the LLM Era. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge

Discovery and Data Mining. 6437–6447.

[22] Kerstin Dautenhahn. 1998. The Art of Designing Socially Intelligent Agents:
Science, Fiction, and the Human in the Loop. Applied Artificial Intelligence 12,
7-8 (1998), 573–617.

[23] Pieter Delobelle, Ewoenam Kwaku Tokpo, Toon Calders, and Bettina Berendt.
2022. Measuring Fairness with Biased Rulers: A Comparative Study on Bias
Metrics for Pre-trained Language Models. In Proceedings of the 2022 Conference

of the North American Chapter of the Association for Computational Linguistics.
Association for Computational Linguistics, 1693–1706.

[24] Angela Fan, Beliz Gokkaya, Mark Harman, Mitya Lyubarskiy, Shubho Sengupta,
Shin Yoo, and Jie M Zhang. 2023. Large Language Models for Software Engineer-
ing: Survey and Open Problems. In 2023 IEEE/ACM International Conference on

Software Engineering: Future of Software Engineering (ICSE-FoSE). IEEE, 31–53.
[25] Carmine Ferrara, Giulia Sellitto, Filomena Ferrucci, Fabio Palomba, and Andrea

De Lucia. 2024. Fairness-Aware Machine Learning Engineering: How Far Are
We? Empirical Software Engineering 29, 1 (2024), 9.

[26] Sainyam Galhotra, Yuriy Brun, and Alexandra Meliou. 2017. Fairness Testing:
Testing Software for Discrimination. In Proceedings of the 2017 11th Joint Meeting

on Foundations of Software Engineering (Paderborn, Germany) (ESEC/FSE 2017).
Association for Computing Machinery, New York, NY, USA, 498–510. https:
//doi.org/10.1145/3106237.3106277

[27] Isabel O Gallegos, Ryan A Rossi, Joe Barrow, Md Mehrab Tanjim, Sungchul Kim,
Franck Dernoncourt, Tong Yu, Ruiyi Zhang, and Nesreen K Ahmed. 2024. Bias
and Fairness in Large Language Models: A Survey. Computational Linguistics 50,
3 (2024), 1097–1179.

[28] Gartner. 2025. Gartner Predicts 75% of Analytics Content to Use
GenAI for Enhanced Contextual Intelligence by 2027. Press Release.
https://www.gartner.com/en/newsroom/press-releases/2025-06-18-gartner-
predicts-75-percent-of-analytics-content-to-use-genai-for-enhanced-
contextual-intelligence-by-2027.

[29] Ximena Gutierrez-Vasques, Christian Bentz, Olga Sozinova, and Tanja Samardzic.
2021. FromCharacters toWords: The Turning Point of BPEMerges. In Proceedings
of the 16th Conference of the European Chapter of the Association for Computational

Linguistics: Main Volume, Paola Merlo, Jorg Tiedemann, and Reut Tsarfaty (Eds.).
Association for Computational Linguistics, Online, 3454–3468. https://doi.org/
10.18653/v1/2021.eacl-main.302

[30] Max Hort, Zhenpeng Chen, Jie M Zhang, Mark Harman, and Federica Sarro. 2024.
Bias Mitigation for Machine Learning Classifiers: A Comprehensive Survey. ACM
Journal on Responsible Computing 1, 2 (2024), 1–52.

[31] Dong Huang, Jie M. Zhang, Qingwen Bu, Xiaofei Xie, Junjie Chen, and Heming
Cui. 2025. Bias Testing and Mitigation in LLM-based Code Generation. ACM
Transactions on Software Engineering and Methodology (March 2025). https:
//doi.org/10.1145/3724117 Just Accepted.

[32] Sangwon Hyun, Mingyu Guo, and M Ali Babar. 2024. METAL: Metamorphic
Testing Framework for Analyzing Large-Language Model Qualities. In 2024 IEEE

Conference on Software Testing, Verification and Validation (ICST). IEEE, 117–128.
[33] Pravin M. Kamde, V. D. Nandavadekar, and R. G. Pawar. 2006. Value of Test Cases

in Software Testing. In 2006 IEEE International Conference on Management of

Innovation and Technology, Vol. 2. 668–672. https://doi.org/10.1109/ICMIT.2006.
262303

[34] Enkelejda Kasneci, Kathrin Seßler, Stefan Küchemann, Maria Bannert, Daryna
Dementieva, Frank Fischer, Urs Gasser, Georg Groh, Stephan Günnemann, Eyke
Hüllermeier, et al. 2023. ChatGPT for Good? On Opportunities and Challenges
of Large Language Models for Education. Learning and Individual Differences 103
(2023), 102274.

[35] Ranim Khojah, Mazen Mohamad, Philipp Leitner, and Francisco Gomes de
Oliveira Neto. 2024. Beyond Code Generation: An Observational Study of Chat-
GPT Usage in Software Engineering Practice. Proceedings of the ACM on Software

Engineering 1, FSE, Article 81 (July 2024), 22 pages. https://doi.org/10.1145/
3660788

[36] Matt Kusner, Joshua Loftus, Chris Russell, and Ricardo Silva. 2017. Counterfactual
Fairness. In Proceedings of the 31st International Conference on Neural Information

Processing Systems (Long Beach, California, USA) (NIPS’17). Curran Associates
Inc., Red Hook, NY, USA, 4069–4079.

[37] Yingji Li, Mengnan Du, Rui Song, Xin Wang, and Ying Wang. 2023. A survey on
Fairness in Large Language Models. arXiv preprint arXiv:2308.10149 (2023).

[38] Pingchuan Ma, Shuai Wang, and Jin Liu. 2020. Metamorphic Testing and Certified
Mitigation of Fairness Violations in NLP Models.. In IJCAI, Vol. 20. 458–465.

[39] Suvodeep Majumder, Joymallya Chakraborty, Gina R. Bai, Kathryn T. Stolee, and
Tim Menzies. 2023. Fair Enough: Searching for Sufficient Measures of Fairness.
ACM Transactions on Software Engineering and Methodology 32, 6, Article 134
(Sept. 2023), 22 pages. https://doi.org/10.1145/3585006

[40] Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram
Galstyan. 2021. A Survey on Bias and Fairness in Machine Learning. ACM

Computing Surveys (CSUR) 54, 6 (2021), 1–35.
[41] Sergio Morales, Robert Clarisó, and Jordi Cabot. 2024. Automating Bias Testing of

LLMs. In Proceedings of the 38th IEEE/ACM International Conference on Automated

Software Engineering (Echternach, Luxembourg) (ASE ’23). IEEE Press, 1705–1707.
https://doi.org/10.1109/ASE56229.2023.00018

https://doi.org/10.1109/IEEESTD.2022.9698145
https://arxiv.org/abs/2302.06784
https://arxiv.org/abs/2302.06784
https://doi.org/10.1145/3582515.3609555
https://doi.org/10.1109/TSE.2014.2372785
https://doi.org/10.1109/ACCESS.2025.3564867
https://doi.org/10.1145/3652155
https://doi.org/10.1145/3682112.3682117
https://doi.org/10.1109/ICSTW.2013.76
https://doi.org/10.1145/3106237.3106277
https://doi.org/10.1145/3106237.3106277
https://www.gartner.com/en/newsroom/press-releases/2025-06-18-gartner-predicts-75-percent-of-analytics-content-to-use-genai-for-enhanced-contextual-intelligence-by-2027
https://www.gartner.com/en/newsroom/press-releases/2025-06-18-gartner-predicts-75-percent-of-analytics-content-to-use-genai-for-enhanced-contextual-intelligence-by-2027
https://www.gartner.com/en/newsroom/press-releases/2025-06-18-gartner-predicts-75-percent-of-analytics-content-to-use-genai-for-enhanced-contextual-intelligence-by-2027
https://doi.org/10.18653/v1/2021.eacl-main.302
https://doi.org/10.18653/v1/2021.eacl-main.302
https://doi.org/10.1145/3724117
https://doi.org/10.1145/3724117
https://doi.org/10.1109/ICMIT.2006.262303
https://doi.org/10.1109/ICMIT.2006.262303
https://doi.org/10.1145/3660788
https://doi.org/10.1145/3660788
https://doi.org/10.1145/3585006
https://doi.org/10.1109/ASE56229.2023.00018

Toward Systematic Counterfactual Fairness Evaluation of Large Language Models: The CAFFE Framework ICSE’26, April 12–18, 2026, Rio de Janeiro, Brazil

[42] Sergio Morales, Robert Clarisó, and Jordi Cabot. 2024. A DSL for Testing LLMs for
Fairness and Bias. In Proceedings of the ACM/IEEE 27th International Conference

on Model Driven Engineering Languages and Systems (Linz, Austria) (MODELS

’24). Association for Computing Machinery, New York, NY, USA, 203–213. https:
//doi.org/10.1145/3640310.3674093

[43] DevonMyers, RamiMohawesh, Venkata Ishwarya Chellaboina, Anantha Lakshmi
Sathvik, Praveen Venkatesh, Yi-Hui Ho, Hanna Henshaw, Muna Alhawawreh,
David Berdik, and Yaser Jararweh. 2023. Foundation and Large Language Models:
Fundamentals, Challenges, Opportunities, and Social Impacts. Cluster Computing

27, 1 (Nov. 2023), 1–26. https://doi.org/10.1007/s10586-023-04203-7
[44] Takashi Nakano, Kazumasa Shimari, Raula Gaikovina Kula, Christoph Treude,

Marc Cheong, and Kenichi Matsumoto. 2024. Nigerian Software Engineer or
American Data Scientist? GitHub Profile Recruitment Bias in Large Language
Models. In 2024 IEEE International Conference on Software Maintenance and Evo-

lution (ICSME). IEEE, 624–629.
[45] Nikita Nangia, Clara Vania, Rasika Bhalerao, and Samuel R. Bowman. 2020.

CrowS-Pairs: A Challenge Dataset for Measuring Social Biases in Masked Lan-
guage Models. In Proceedings of the 2020 Conference on Empirical Methods in

Natural Language Processing. Association for Computational Linguistics, Online.
[46] Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad Saqib, Saeed Anwar,

Muhammad Usman, Naveed Akhtar, Nick Barnes, and Ajmal Mian. 2023. A
Comprehensive Overview of Large Language Models. ACM Transactions on

Intelligent Systems and Technology (2023).
[47] Phuong T Nguyen, Riccardo Rubei, Juri Di Rocco, Claudio Di Sipio, Davide

Di Ruscio, and Massimiliano Di Penta. 2023. Dealing with Popularity Bias in
Recommender Systems for Third-party Libraries: How Far Are We?. In 2023

IEEE/ACM 20th International Conference on Mining Software Repositories (MSR).
IEEE, 12–24.

[48] OpenAI. 2024. GPT-4o System Card. arXiv:2410.21276 [cs.CL] https://arxiv.org/
abs/2410.21276

[49] Alessandra Parziale, Gianmario Voria, Giammaria Giordano, Gemma Catolino,
Gregorio Robles, and Fabio Palomba. 2025. Fairness on a Budget, Across the
Board: A Cost-effective Evaluation of Fairness-aware Practices Across Contexts,
Tasks, and Sensitive Attributes. Information and Software Technology 188 (2025),
107858. https://doi.org/10.1016/j.infsof.2025.107858

[50] Alessandra Parziale, Gianmario Voria, Valeria Pontillo, Gemma Catolino, Andrea
De Lucia, and Fabio Palomba. [n. d.]. Online Appendix. https://github.com/
AlessandraParziale/CAFFE-Framework

[51] Dana Pessach and Erez Shmueli. 2022. A Review on Fairness in Machine Learning.
ACM Computing Surveys (CSUR) 55, 3 (2022), 1–44.

[52] Dimas Wibisono Prakoso, Asad Abdi, and Chintan Amrit. 2021. Short Text
Similarity Measurement Methods: A Review. Soft Computing 25, 6 (March 2021),
4699–4723. https://doi.org/10.1007/s00500-020-05479-2

[53] Paul Ralph, Sebastian Baltes, Domenico Bianculli, Yvonne Dittrich, Michael
Felderer, Robert Feldt, Antonio Filieri, Carlo Alberto Furia, Daniel Graziotin,
Pinjia He, Rashina Hoda, Natalia Juristo, Barbara A. Kitchenham, Romain Robbes,
Daniel Méndez, Jefferson Seide Molléri, Diomidis Spinellis, Miroslaw Staron,
Klaas-Jan Stol, Damian A. Tamburri, Marco Torchiano, Christoph Treude, Bu-
rak Turhan, and Sira Vegas. 2020. ACM SIGSOFT Empirical Standards. CoRR

abs/2010.03525 (2020). arXiv:2010.03525 https://arxiv.org/abs/2010.03525
[54] Vidasha Ramnarain-Seetohul, Vandana Bassoo, and Yasmine Rosunally. 2022.

Work-in-Progress: Computing Sentence Similarity for Short Texts Using Trans-
former models. In 2022 IEEE Global Engineering Education Conference (EDUCON).
1765–1768. https://doi.org/10.1109/EDUCON52537.2022.9766649

[55] Peter Robe, Sandeep K. Kuttal, Jake AuBuchon, and Jacob Hart. 2022. Pair Pro-
gramming Conversations with Agents vs. Developers: Challenges and Opportu-
nities for SE Community. In Proceedings of the 30th ACM Joint European Software

Engineering Conference and Symposium on the Foundations of Software Engineering

(Singapore, Singapore) (ESEC/FSE 2022). Association for Computing Machinery,
New York, NY, USA, 319–331. https://doi.org/10.1145/3540250.3549127

[56] Murray Shanahan. 2024. Talking about Large Language Models. Commun. ACM

67, 2 (2024), 68–79.
[57] Rajvir Singh. 2014. Test Case Generation for Object-Oriented Systems: A Review.

In 2014 Fourth International Conference on Communication Systems and Network

Technologies. 981–989. https://doi.org/10.1109/CSNT.2014.201
[58] Kumiko Tanaka-Ishii and Shunsuke Aihara. 2015. Computational Constancy

Measures of Texts—Yule’s K and Rényi’s Entropy. Computational Linguistics 41,
3 (Sept. 2015), 481–502. https://doi.org/10.1162/COLI_a_00228

[59] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-
mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-
ale, et al. 2023. Llama 2: Open Foundation and Fine-tuned Chat Models. arXiv
preprint arXiv:2307.09288 (2023).

[60] Christoph Treude and Hideaki Hata. 2023. She Elicits Requirements and He
Tests: Software Engineering Gender Bias in Large Language Models. In 2023

IEEE/ACM 20th International Conference on Mining Software Repositories (MSR).
IEEE, 624–629.

[61] Yuxuan Wan, Wenxuan Wang, Pinjia He, Jiazhen Gu, Haonan Bai, and Michael R
Lyu. 2023. BiasAsker: Measuring the Bias in Conversational AI System. In
Proceedings of the 31st ACM Joint European Software Engineering Conference and

Symposium on the Foundations of Software Engineering. 515–527.
[62] Yi Wei, Bertrand Meyer, and Manuel Oriol. 2012. Is Branch Coverage a Good

Measure of Testing Effectiveness? Springer-Verlag, Berlin, Heidelberg, 194–212.
[63] E.J. Weyuker and F.I. Vokolos. 2000. Experience with Performance Testing of

Software Systems: Issues, An Approach, and Case Study. IEEE Transactions on

Software Engineering 26, 12 (2000), 1147–1156. https://doi.org/10.1109/32.888628
[64] Frank F Xu, Uri Alon, Graham Neubig, and Vincent Josua Hellendoorn. 2022. A

Systematic Evaluation of Large Language Models of Code. In Proceedings of the

6th ACM SIGPLAN international symposium on machine programming. 1–10.
[65] Juyeon Yoon, Robert Feldt, and Shin Yoo. 2025. Adaptive Testing for LLM-based

Applications: A Diversity-based Approach. In 2025 IEEE International Conference

on Software Testing, Verification and Validation Workshops (ICSTW). IEEE, 375–
382.

[66] Jialin Zhang. 2022. Entropic Statistics: Concept, Estimation, and Application in
Machine Learning and Knowledge Extraction. Machine Learning and Knowledge

Extraction 4, 4 (2022), 865–887. https://doi.org/10.3390/make4040044
[67] Jie M. Zhang, Mark Harman, Lei Ma, and Yang Liu. 2022. Machine Learning Test-

ing: Survey, Landscapes and Horizons. IEEE Transactions on Software Engineering

48, 1 (Jan. 2022), 1–36. https://doi.org/10.1109/TSE.2019.2962027

https://doi.org/10.1145/3640310.3674093
https://doi.org/10.1145/3640310.3674093
https://doi.org/10.1007/s10586-023-04203-7
https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2410.21276
https://doi.org/10.1016/j.infsof.2025.107858
https://github.com/AlessandraParziale/CAFFE-Framework
https://github.com/AlessandraParziale/CAFFE-Framework
https://doi.org/10.1007/s00500-020-05479-2
https://arxiv.org/abs/2010.03525
https://arxiv.org/abs/2010.03525
https://doi.org/10.1109/EDUCON52537.2022.9766649
https://doi.org/10.1145/3540250.3549127
https://doi.org/10.1109/CSNT.2014.201
https://doi.org/10.1162/COLI_a_00228
https://doi.org/10.1109/32.888628
https://doi.org/10.3390/make4040044
https://doi.org/10.1109/TSE.2019.2962027

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Terminology
	2.2 Related Work and Motivation

	3 Formalizing LLM-Fairness Test Cases
	4 CAFFE - Systematic Fairness Testing for Large Language Models
	4.1 Test Data Generator
	4.2 Test Case Execution
	4.3 Test Report

	5 Empirical Evaluation
	5.1 Research Questions
	5.2 Research Methods

	6 Analysis of the Results
	6.1 RQ1 — Test Data Generation
	6.2 RQ2 — Response Evaluation
	6.3 RQ3 — Overall CAFFE Effectiveness

	7 Threats to Validity
	8 Conclusion
	Acknowledgments
	References

