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Abstract—Architecture as Code has been promoted as a way
to bring code-centricity, automation, and approachability to
software architecture, yet empirical evidence on how it is realized
in industry remains scarce. This paper reports a multiple-
case study conducted with a European consulting company
serving the financial and insurance sectors. We analyze three
engagements of the company with different customers, which
offer three complementary instantiations of Architecture as Code.
Data were collected over six months through biweekly online
workshops, follow-up emails, slide decks, and detailed researcher
notes. Analysis proceeded iteratively, alternating between internal
consolidation and researcher–industry validation, and concluded
with a cross-case synthesis against the existing Architecture as
Code framework. Findings show that the Architecture as Code
paradigm is present in all cases, albeit at varying levels of matu-
rity. The study provides empirical evidence of how Architecture
as Code is practiced across various industrial settings, sharpening
its operational meaning by indicating where its characteristics are
sufficient and where they require refinement.

Index Terms—Architecture-as-Code; Model-Driven Architec-
ture; Case Studies; Empirical Software Engineering.

I. INTRODUCTION

Software architecture shapes the structure, quality, and evo-
lution of complex systems [12]. As organizations adopt con-
tinuous engineering, architecture must support rapid change
while preserving integrity and traceability [2], [4], [8], [14],
[18]. This shift increasingly blurs design, implementation, and
operations, fostering executable and continuously synchro-
nized architectural practices.

In such a context, the “as Code” paradigm has transformed
Software Engineering (SE) practices by codifying tradition-
ally manual activities into version-controlled, automatable
artifacts [13], [17]. This shift, started by Infrastructure as
Code (IaC) [10], has enabled reproducibility, consistency, and
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collaboration on an unprecedented scale. The recent Archi-
tecture as Code (AaC) concept extends this philosophy to
architectural knowledge, capturing decisions, structures, and
quality concerns as analyzable and evolvable code [4].

Despite growing industrial interest, AaC lacks substantial
empirical validation within software architecture. Recent aca-
demic work has begun to formalize the concept, identifying
a set of core characteristics like code-centricity, automation,
and approachability that define what it means to treat archi-
tecture “as Code” [4]. However, it remains unclear how these
characteristics manifest in practice, how practitioners interpret
and operationalize AaC principles in real projects, and whether
the original conceptual framework [4] adequately captures the
diversity of industrial implementations.

To address this gap, we present an empirical multiple-case
study conducted in collaboration with a European consulting
company specializing in software architecture management
and digital transformation services for the financial and in-
surance sectors. The study examines three industrial cases
that reflect distinct applications of the AaC paradigm as
definition and governance of Architectural Decision Records
(ADRs) [15], [16] linked to C4 models [3]. Through these
cases, we investigate the implementation of AaC in industrial
practice and aim to answer the following research questions:

• RQ1: How are Architecture as Code characteristics and
aspects manifested in industrial practice?

• RQ2: To what extent do the previously defined Archi-
tecture as Code characteristics and aspects adequately
describe the practices observed in real-world settings?

• RQ3: What additional insights or refinements emerge
from the empirical analysis of Architecture as Code
implementations across multiple cases?

Our analysis provides both validation and refinement of the
AaC concepts, bridging the gap between theoretical formula-
tion and industrial application. The contributions of this work
are threefold: (i) we provide an in-depth, multi-case empirical
examination of AaC practices in an industrial context; (ii) we
assess the adequacy of the established AaC characteristics and
identify areas where they require extension or reinterpretation;
and (iii) we distill lessons learned and observed benefits and
challenges, offering guidance for organizations adopting or
scaling AaC practices.
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II. ARCHITECTURE AS CODE: STATE OF THE ART

The concept of AaC builds on the Everything as Code
paradigm [17], which automates SE concerns by represent-
ing them as version-controlled, machine-processable artifacts.
AaC can be considered a specialization that focuses on codi-
fying architectural knowledge and decisions.

Existing studies approach AaC from multiple perspectives
such as documentation and project management support [5],
model-driven approaches where architecture generates code
and tests [7], and automation-centric views extending IaC
within DevOps and cloud contexts [6], [9].

Recently, the definition of AaC has been studied through
a systematic, multivocal literature review to identify its core
characteristics and principles [4]. Building on that foundation,
this study empirically examines how these characteristics
manifest in real industrial settings.

AaC has been defined as “an approach in which software
architecture is continuously defined, managed, and evolved
through a machine-readable, version-controlled code base. It
embeds structural elements, rules, and constraints directly
into codified artifacts, and leverages automation to ensure
that architectural representations are generated and updated
throughout the software lifecycle” [4].

Accordingly, AaC is characterized by three dimensions [4].
First, its code-centric representation captures architectural
knowledge in machine-readable artifacts (e.g., YAML/JSON)
rather than static documents, enabling source-code workflows
to govern architecture and reducing drift. Second, AaC relies
on automation-driven synchronization. Because artifacts are
executable or machine-processable, tool-chains and CI/CD
pipelines can regenerate views and documentation, validate
constraints, and enforce modeling or policy rules when the
system changes. For example, tools can transform C4 specifi-
cations into typed models and metadata-enriched documenta-
tion, keeping architecture synchronized with code and configu-
ration; without regeneration, AaC reverts to conventional doc-
umentation maintenance [4]. Third, AaC promotes approacha-
bility and collaboration through familiar notations, lightweight
DSLs, and shared vocabularies. In Agile and DevOps contexts,
this enables incremental architectural evolution, continuous
visibility, and cross-team contribution.

In summary, AaC is gaining traction in industry and is
widely discussed in practitioner forums and tooling ecosys-
tems. However, systematic empirical studies of how AaC
manifests in practice remain limited. This paper addresses this
gap through an investigation of AaC concepts, practices, tools,
and challenges within a medium-sized consultancy.

III. RESEARCH PROCESS

We employ a multiple-case study design, following Yin [19]
and Runeson and Höst [11], to examine how AaC principles
manifest in industrial practice. The aim is to validate and,
if necessary, refine or extend AaC characteristics through
empirical evidence. A case study approach was selected to
enable in-depth investigation of a contemporary phenomenon
in its real-world, academia–industry collaborative context.

The study was conducted in partnership with a medium-
sized consultancy in the financial and insurance sector.
The company delivers software architecture management and
strategic advisory services to organizations undergoing digital
transformation, including the definition of architectural gov-
ernance frameworks, documentation of design decisions, and
implementation of automation mechanisms for architectural
knowledge management. Three client engagements (cases)
were selected through purposive sampling to represent differ-
ent applications of architecture management automation and
contrasting applications of AaC:

• Case A (Architectural Practice and Governance): a large
European private bank. The engagement focused on ar-
chitecture governance and C4-based model management.

• Case B (Documentation and Views): a major European
financial and insurance group. The project implemented
automated generation of architectural documentation and
views aligned with industry and regulatory standards.

• Case C (Architectural Knowledge): a top-tier European
banking group. The engagement modernized enterprise-
wide architectural governance and knowledge manage-
ment, enabling decision traceability across subsidiaries
through a shared repository.

Data were collected over six months through biweekly Mi-
crosoft Teams workshops involving at least three researchers
and two enterprise architects (Figure 1), supplemented by
email exchanges. Initial sessions were exploratory, focusing
on organizational context, the three selected cases, and joint
formulation of the RQs to align academic and industrial
perspectives (green circle in Figure 1).

As the study progressed, meetings became iterative tech-
nical briefings in which emerging analytical insights were
discussed (blue and red circles in Figure 1). Data collection
and analysis were closely intertwined at two levels. First,
within the research team, members independently analyzed the
material, identified manifestations of AaC characteristics, and
compared interpretations using shared matrices. Discrepancies
were resolved through discussion in synthesis meetings, aim-
ing at conceptual validation rather than statistical agreement.

Second, consolidated interpretations were presented to the
company for validation and refinement (red circle in Figure 1).
Practitioners confirmed, nuanced, or challenged the findings,
leading to iterative adjustments of both the AaC framework
and its mapping to observed practices.

For privacy and confidentiality reasons, no recordings or
verbatim transcripts were made, while detailed manual notes
were taken during each meeting. We conducted a dozen struc-
tured sessions, and all notes were collaboratively reviewed
within the research team to ensure accuracy and completeness.

Threats to Validity

We discuss the threats to validity classification proposed by
Runeson and Höst [11].

a) Construct validity: Data triangulation was ensured
through multiple sources (meeting notes, slides, observations)
and iterative validation sessions with practitioners. Research
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Fig. 1. Overview of the adopted research process.

questions and scope were jointly defined with the company to
ensure alignment with the industrial context.

b) Internal validity: Several actions were taken to
strengthen interpretive rigor. Multiple researchers indepen-
dently analyzed the same data and subsequently reached
consensus through internal discussions, reducing individual
bias. The iterative cycles between the academic and industrial
teams further support interpretive validation, as preliminary
interpretations were systematically reviewed, confirmed, or
challenged by practitioners.

c) External validity: As the study focuses on three
cases within the same industrial domain, the results are not
statistically generalizable. However, the case studies were
intentionally selected through purposive sampling to repre-
sent contrasting applications of AaC, thus allowing analytical
generalization to other industrial contexts where architecture
management and automation practices are comparable. The
detailed descriptions of each case enable readers to assess the
transferability of the findings to their own settings.

d) Reliability: A consistent research protocol was fol-
lowed across the cases, including structured meeting sched-
ules, shared analysis matrices, and collaborative note reviews.
All data were anonymized, stored in an access-restricted
repository, and cross-checked by multiple researchers. While
no audio recordings were taken for confidentiality reasons,
comprehensive manual notes were produced and verified by
all researchers to maintain traceability.

IV. CASE A (ARCHITECTURAL PRACTICE AND
GOVERNANCE)

Case A adopts a governance-driven, process-oriented ap-
proach to architectural decision-making in a large European
private bank. Structured checklists and standardized solution
design templates guide a staged workflow (early assessment,
design validation, post-implementation review). Architectural
knowledge is documented using the ARC42 standard,1 includ-
ing ADRs and C4 diagrams, to ensure consistent abstraction,
traceability, and alignment with enterprise constraints.

a) Code-centric representation: Architecture is main-
tained as a structured, version-controlled system representa-
tion. Diagram-as-code, based on the C4 model and imple-
mented with Structurizr, ensures a shared modeling language
and reproducible views. Listing 1 illustrates a Structurizr DSL
excerpt defining system boundaries, containers, components,
and their runtime relationships as renderable, versioned code.

1https://arc42.org/

Alignment with implementation is ensured through manual
reviews that update the “Application Landscape,” a portfolio-
level view of systems and integrations. Architectural artifacts
are versioned manually using a conventional vX.Y scheme.
Traceability relies on disciplined management of C4 defini-
tions and versions within the modeling tool and repository.

Listing 1. Excerpt of the Structurizr DSL template
workspace {

name "Solution Design - <project>"
description "Solution design for <project>"
model {

person_user = person "<User type>"
"E.g., financial advisors, customers"

system = softwareSystem "<System>" "<Description>" {
container_api = container "<Container>"

"<Description>" "<Technology>" {
component_auth = component "<Component>"

"<Description>" "<Technology>"
}

}
system2 = softwareSystem "<System2>" "<Description>"
person_user -> system.container_api "User access"
system -> system2 "Information exchange"
system.container_api -> system.container_api
"REST API call" "HTTPS"

}
}

b) Automation-driven evolution of architecture: No au-
tomation is in place for the generation, validation, or synchro-
nization of architectural artifacts. Diagrams and documentation
are authored manually using the diagram-as-code DSL and
then attached to solution documentation. Quality assessment
and architectural analysis are conducted through manual re-
views. There is no integration with development workflows
or CI/CD pipelines: no automated regeneration of diagrams,
constraint checking, or link validation runs on code/configu-
ration changes. Consequently, consistency depends on process
discipline and review cadence rather than on repeatable, tool-
enforced checks.

c) Approachability and Stakeholder Engagement: Ap-
proachability is supported by accessible notations and a struc-
tured vocabulary (ADRs, C4 elements, JSON/DSL snippets),
which establishes a shared language among architects and
developers. To support a consistent and interpretable visual vo-
cabulary, Case A also relies on a predefined set of Structurizr
views and styling rules. Listing 2 illustrates an excerpt of the
template used to standardize system, container, and component
views, including layout directives and the color semantics
applied to the different architectural elements. Stakeholder
engagement occurs through continuous review of diagrams
and documentation during design activities, keeping roles
aligned on decisions and rationale. Each architectural change
or relevant design decision is explicitly recorded, sustaining
visibility and shared understanding as the system evolves.

Listing 2. Excerpt of the Structurizr view and style definitions

views {
systemLandscape * { autoLayout tb 300 300 }
container system * { autoLayout tb 300 300 }
styles {
element "Person" {shape Person

background #771e28 }
element "System" {shape RoundedBox
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background #9f2936}
element "Container" {shape RoundedBox

background #d86b77}
element "Component" {shape RoundedBox

background #e59ca6}
}

}

To summarize, Case A demonstrates clear code-centric
treatment of architectural knowledge (ADRs and diagram-as-
code) and strong engagement through shared language and
recurring reviews. Because of the absence of automation
(no pipelines for regeneration, conformance checking, or link
validation), synchronization and traceability rely on manual
governance rather than tool-supported, repeatable workflows.

V. CASE B (DOCUMENTATION AND VIEWS)

Case B automates component-level architectural views trig-
gered by code changes, using industry- and regulation-aligned
templates. Artifacts are treated as first-class configuration
items: repositories are scaffolded from standard templates,
metadata is pre-populated, and conventions are enforced via
CI/CD. Documentation is maintained in machine-processable
formats (e.g., Markdown, YAML, diagram-as-code). Each
update triggers formatting, regeneration, semantic versioning,
and publication to the internal portal, ensuring synchronization
with development and regulatory compliance.

a) Code-centric representation: Adoption is explicit and
operational: architecture is managed as code from the out-
set using diagram-as-code. Document skeletons are auto-
generated in Git repositories, and all artifacts are authored
in Markdown. Alignment between architecture and imple-
mentation is maintained for component-level views through
synchronized workflows spanning Git, issue tracking, and
CI/CD pipelines: each change triggers automated jobs that en-
force structure, apply templates, and synchronize architectural
metadata with development work items. Versioning is fully
automated: upon merge request approval, the pipeline tags
artifacts, updates semantic version numbers (for example, 1.0.0
-¿ 1.1.0), and handles major version bumps based on fields
in the metadata.yaml file. Traceability is ensured through the
Git history and cross-links among issues, commits, and merge
requests, which record every modification to documents and
diagrams. Listing 3 illustrates an auto-generated repository
containing Markdown artifacts, media assets, and metadata
descriptors structuring the architectural knowledge base.

Listing 3. Simplified structure of the Git repository
/
|-- media/
| |-- images/
| |-- graphs/
|
|-- metadata.yaml
|-- solution-design.md

b) Automation-driven evolution of architecture: Archi-
tectural documentation is automatically generated by the
CI/CD pipeline: after merge approval, CI jobs render PDFs
from Markdown/YAML sources, bundle versioned outputs,

Fig. 2. Representation of the automated documentation pipeline in Case B,
from the request to change creation to publication.

and CD jobs publish them to the documentation portal. Fig-
ure 2 outlines this workflow across Git, CI/CD, and publication
stages, ensuring continuous synchronization between architec-
ture and implementation. Automated quality analysis is not
yet implemented, and reviews remain manual. However, struc-
tured metadata enables future completeness and conformance
checks. Integration with development is strong: documenta-
tion workflows are embedded in the DevOps toolchain, and
architectural artifacts evolve in lockstep with the code base.

c) Approachability and stakeholder engagement: Ap-
proachability is supported through accessible notations, in-
cluding a C4-based DSL rendered with PlantUML,2 and
Markdown for narrative content. A structured vocabulary
derived from C4 ensures consistent terminology across teams.
Listing 4 shows a metadata.yaml excerpt enabling naming
conventions, classification, semantic versioning, and future au-
tomated validation. Stakeholder engagement is embedded via
role-based workflows (author, reviewer, approver), merge/pull
requests, automated notifications, and distributed reviews.
Component-level documentation and diagrams reside along-
side the code and are versioned with it, capturing emergent
architectural changes in sync with implementation.

Listing 4. Excerpt of the metadata.yaml

2https://plantuml.com/
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title: "Architectural Guidelines"
document_type: "Technical specifications"
office: "Architecture and Data Management"
project: Name Project
version: 1.0.0
classification: "internal use only"

In summary, Case B reflects a mature realization of AaC
through standardized documentation, continuous artifact evo-
lution, and structured review workflows. Although quality
assessment is still manual, Markdown/YAML and metadata-
driven processes establish a strong basis for further au-
tomation. Role-based reviews and formalized contribution
workflows institutionalize stakeholder engagement and sustain
shared understanding as the system evolves.

VI. CASE C (ARCHITECTURAL KNOWLEDGE)

Case C modernizes architectural governance and enterprise-
wide knowledge management by consolidating artifacts in
a shared repository to ensure traceability across subsidiaries
and business lines. Enforceable standards define notation,
vocabulary, mandatory metadata, and review roles, ensuring
artifacts are consistent, comparable, and aligned for integration
with centralized EA and GRC processes.

a) Code-centric representation: Case C adopts the C4
Model expressed as strict diagram-as-code with machine-
readable notation. Diagrams are generated from design-time
declarations or validated against runtime data, and are version-
controlled under governed syntax. Alignment is maintained
through solution processes that update architectural schemes
and automated runtime checks detecting deviations between
declared and actual states. Versioning policy requires architec-
tural schemes to represent the latest “photograph” of the sys-
tem, while as-is and to-be versions coexist to support planned
evolution. Traceability is enabled by integrating EA and GRC
tools, linking systems, architectures, and organizational pro-
cesses. This approach conceptually mirrors a modeling and
styling patterns similar to the one illustrated in Listing 1.

b) Automation-driven evolution of architecture: Auto-
matic generation of architectural diagrams is provided by a
custom toolchain that takes a structured spreadsheet as input
and, using official C4 libraries, produces PlantUML diagrams.
This mechanism enforces consistency, reproducibility, and
standardization across representations. Although standardized
fields (e.g., protocols, security patterns, and node types) enable
potential automated analysis and quality assessment, qualita-
tive validation of architectural information is still performed
manually by solution architects. With respect to integration
with development practices, no automated DevOps processes
are currently in place. The management of diagrams and
documentation relies on manual activities, while automation
is limited to generating diagrams from structured inputs.

c) Approachability and stakeholder engagement: Ap-
proachability is ensured through a C4-based DSL rendered
with PlantUML and a structured vocabulary with unified
notation and color semantics, enabling consistent interpretation
across teams. This aligns conceptually with the styling conven-
tions in Listing 2. Stakeholder engagement is encouraged by

involving development groups directly in the process: teams
provide component inventories and integration details that feed
the automatic diagram generator, fostering shared ownership of
architectural information. The approach supports emergent ar-
chitecture through continuous updates of architectural schemes
and the coexistence of as-is and to-be views.

To summarize, Case C exhibits strong code-centric diagrams
and governance-oriented practices with partial automation
focused on diagram generation from standardized inputs. In-
tegration with CI/CD and automated conformance checks is
not yet present, so quality assurance and synchronization be-
yond diagram generation remain manual. Nevertheless, shared
vocabulary, unified notation, and collaborative data provision
enhance accessibility, traceability, and cross-subsidiary align-
ment of architectural knowledge.

VII. ANSWERING THE RQS

Each question targets a distinct perspective: in RQ1, we
analyse how AaC principles and characteristics are manifested
in industrial practice across the three cases; for RQ2, we
evaluate the adequacy of the existing AaC characteristics; and
in RQ3, we derive refinements and extensions to the AaC
framework grounded in real-world scenarios.

A. RQ1: AaC Characteristics and Aspects in Practice.
To answer RQ1, we refer to the three characteristics of AaC.

a) Code-Centric approach to define and manage archi-
tecture: All cases externalize architectural knowledge into
machine-readable sources (for example, ADRs, C4-style def-
initions, Markdown/YAML) governed in repositories or en-
terprise platforms, and all employ a shared vocabulary that
enables multi-role contribution.

b) Automation-driven evolution of architecture: Where
automation is limited, organizations compensate by imple-
menting disciplined review and governance to maintain align-
ment. Where automation is stronger, provenance and publica-
tion are managed through pipelines and templates rather than
manual document work. Two implementation profiles emerge:
(i) a pipeline-integrated profile (Case B), where CI/CD
pipelines regenerate, version, and publish architectural artifacts
in sync with code; (ii) an enterprise-portfolio–integrated pro-
file (Case C), where registries and EA/GRC integration ensure
standardization and cross-subsidiary alignment, albeit with
weaker coupling to development workflows. Case A represents
a governance-based baseline relying on manual review rather
than tool-enforced checks.

Across the profiles, three operational enablers support work-
able AaC: a minimal metadata schema that makes artifacts
parseable (e.g., metadata.yaml, standardized fields for de-
cisions, interfaces, and policies), template that standardizes
outputs for internal and regulatory audiences, and explicit own-
ership and review roles embedded in routine work. A trade-off
emerges between speed of change and assurance: (i) pipeline-
backed synchronization reduces drift but requires investment
in schemas, templates, and trigger policies; (ii) enterprise in-
tegration increases portfolio visibility but can lag behind fast-
moving code unless fed by development workflows. We also
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TABLE I
AAC MAIN CHARACTERISTICS AND FOUNDATIONAL ASPECTS.

Characteristics Aspects Case Study A Case Study B Case Study C

(1) Code-Centric
approach to define and
manage architecture

Diagram as code (modeling)

Alignment between architecture and code

Versioning

Traceability

(2) Automation-driven
evolution of architecture

Automatic generation of architectural diagrams, documentation, etc.

Automatic analysis and quality assessment

Integration with development practices

(3) Approachability and
stakeholder engagement

Accessible languages (DSLs)

Structured vocabulary

Ubiquitous language

Software development life cycle models fostering stakeholder engagement

Software development life cycle models supporting emergent architecture

note two anti-patterns that hinder AaC outcomes: (i) “docs-as-
code without synchronization”, where artifacts are authored
as code but neither regenerated nor validated (readable yet
prone to silent drift), and (ii) “generator-only”, where views
are produced from registries but lack automated conformance
checks, shifting quality assurance back to manual review.

c) Approachability and stakeholder engagement: All
cases adopt accessible notations and shared vocabularies (C4-
based DSLs, naming conventions, visual standards) to support
multi-role contribution. Engagement is embedded through
recurring reviews (Case A), role-based merge workflows (Case
B), or collaborative data provision for diagram generation
(Case C). Architectural changes are explicitly recorded, sup-
porting emergent architecture across contexts.

B. RQ2: Adequacy of Existing AaC Characteristics and As-
pects in Describing Practice.

This RQ assesses how well the previously defined AaC char-
acteristics [4] account for the practices we observed. Table I
summarizes the mapping: a half-filled circle ( ) indicates
partial coverage, a filled circle ( ) denotes full alignment,
and an empty circle ( ) indicates no relevant evidence.

For the code-centric representation, all organizations em-
ploy machine-readable architectural sources, but the extent of
operationalization varies. Case A uses C4 definitions authored
with Structurizr DSL and JSON descriptors. Alignment and
versioning (vX.Y) are maintained by manual reviews rather
than pipelines, and traceability relies on disciplined repository
practices, hence . Case C generates PlantUML/C4 diagrams
from structured spreadsheets via an official C4 library and
stores them in enterprise repositories. As-is and to-be views
coexist, yet continuous linkage to the running system and
development workflow is not enforced, also .

Only Case B achieves a comprehensive realization ( ): (i)
Solution Designs, Guidelines, PlantUML diagrams, and Mark-
down are stored in Git, (ii) metadata.yaml drives generation
and packaging, and (iii) artifacts are versioned automatically
and co-evolve with code through merge workflows.

For automation-driven synchronization, we again see graded
adoption. Case A has no automation beyond tool-assisted
rendering ( ): no CI/CD regeneration or constraint checking,
while publication relies on Structurizr’s native rendering rather
than automated pipeline steps. Case C implements limited but
meaningful automation ( ): a generator produces diagrams
from standardized inputs (protocols, security patterns, node
types), but validation, synchronization, and DevOps integra-
tion remain manual.

Case B provides an extensive pipeline ( ) for component-
level architectural views: (i) CI/CD renders PDFs from
Markdown/YAML, applies organizational templates (includ-
ing compliance-oriented formatting), increments semantic ver-
sions on merge approval, bundles outputs, and publishes them
to an internal portal, and (ii) provenance is captured through
issues, commits, and merge requests. This pattern suggests
that the characteristic recognizes automation in a conceptual
sense but does not distinguish its operational depth, such as
generation, validation, or publication, or the integration points
through which it is performed, which is important in practice.

For approachability and stakeholder engagement, all three
cases align ( ). Each adopts accessible notations and a shared
vocabulary grounded in C4 (and Markdown/YAML where ap-
plicable), enabling multi-role contribution. Engagement mech-
anisms differ by context: (i) Case A relies on recurring multi-
role reviews during design, (ii) Case B embeds roles (author,
reviewer, approver) and notifications into merge workflows,
keeping artifacts near the code, and (iii) Case C involves
development teams in supplying component inventories and
integration data that feed the generator. In all settings, changes
are explicitly recorded and reflected in architectural views,
supporting emergent architecture.

C. RQ3: Additional Insights or Refinements.

Across the three cases, the original AaC characteristics
remain conceptually sound, but their realization in industry de-
pends on concrete operational mechanisms and on enterprise-
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DIAGRAMS DOCUMENTATION

Use of modeling languages VS graphical modeling tools

SCM VS binary versioning (e.g., V1, V2, etc. in the file name)
Git diff VS document repository audit log (e.g., git diff vs SharePoint history)

TRUE only if used for SW and Infrastructure scaffolding --> allows reverse checking

Landscape reconstruction starting from code or infrastructure configurations (harvester).
Generation of documentation from existing repositories (e.g., EA tools, CMDB, etc.).

Reverse-check to verify alignment between software/infrastructure and design.
Adherence to architectural model guidelines or patterns

Scaffolding

The architectures of the solutions must adhere to the guidelines outlined in the EA repository, while
also contributing to the evolution by introducing new patterns, architectural models, and technologies.

Given the prerequisite of process maturity (e.g., Solution Design), stakeholder involvement
is defined and formalized within the processes themselves.

The concepts defined to describe the architecture (blueprint, pattern, reference, principles, etc.) and
the model underlying the repository allow stakeholders to use a common and shared language.

Given an Enterprise Architecture repository adopted as a prerequisite for AaC, the model underlying
the repository provides shared definitions of the elements that make up the architecture.

Accessibility is not necessarily guaranteed by formal language.
It can also be achieved through visual standards or graphical interfaces.

Diagram as code (modeling)

Versioning
Traceability

Automatic analysis and quality assessment

Integration with development practices

(1) Code-Centric
approach to define and
manage architecture

(2) Automation-driven
evolution of architecture

(3) Approachability and
stakeholder engagement

Accesible languages (DSLs)

Strucuctured Vocabulary

Ubiquitous language

Software development lifecycle models supporting
emergent architecture

Software development lifecycle models fostering
stakeholder engagement

Automatic generation of architectural
diagrams, documentation, etc.

Alignment between architecture and code

Fig. 3. Summary of the operational mechanisms required to instantiate each AaC aspect. Colors indicate practical feasibility: green for fully implementable
with standard tooling; yellow for partially implementable or context-dependent; and red for mechanisms requiring strict enterprise-level prerequisites.

level capabilities that the original formulation treats as im-
plicit. Our structured sessions with the partner consultancy
surfaced two complementary layers of refinement. To make
AaC more actionable, it is important to have (i) fine-grained
guidance on how each characteristic can be operationalised
in practice (summarized in Figure 3), and (ii) higher-level
architectural prerequisites that enable AaC to function within
an enterprise ecosystem (depicted in Figure 4).

At the operational level, the analysis clarifies the conditions
under which each AaC characteristic is effective. For the code-
centric representation, effectiveness requires that (i) architec-
tural sources live in a software configuration management sys-
tem (e.g., EA repository) with semantic versioning and prove-
nance, (ii) architectural views are regenerated from source
(e.g., C4/PlantUML or Structurizr DSL) rather than maintained
as static binaries, and (iii) bidirectional links connect model
elements, and implementation artifacts. Alignment with imple-
mentation is achievable only when architecture and infrastruc-
ture scaffolding support harvesting and reverse checks (e.g.,
pipelines that rebuild views on code/configuration changes
and verify model–implementation consistency). Versioning
becomes meaningful when applied to the architectural source
and its templates, rather than merely to the produced PDFs.
Traceability relies on repository-based auditing and structured
metadata (e.g., metadata.yaml, which includes standardized
fields for protocols, security patterns, and node types) rather
than on free-form documents. Finally, approachability requires
more than a DSL: shared visual standards, naming conven-
tions, and contribution workflows (roles, reviews, approvals)
are needed to sustain multi-role participation.

Figure 3 makes visible operational mechanisms that the def-
inition of AaC treated as implicit: scaffolding, EA metadata,
standardized vocabularies, reverse checks, and repository-
based auditing.

Output/Runtime Repository EA Automations

Infrastructure

GuidelinesTech CatalogPolicy

Software

ArchitectureIDP

Scaffolding
Infrastructure

Scaffolding SW

Metadata/input

Metadata/input

input

input

IaC

harvesting reverse check
harvesting reverse check

GuidelinesPatternBlueprint

Fig. 4. Enterprise-level backbone enabling Architecture as Code.

At the enterprise level, AaC does not operate in isolation.
Figure 4 summarizes an enabling backbone composed of an
EA repository (as the semantic hub for vocabularies and
relationships), internal developer platforms and scaffolding
(to seed compliant services and integrations), blueprint and
pattern libraries (to encode reusable solutions), policy and
technology catalogs (for constraints and choices express-
ible as code), and automation modules that integrate with
both software and infrastructure delivery. In this arrange-
ment, architectural knowledge flows from the EA repository
into scaffolding and pipelines, which generate and publish
software and infrastructure. Then, runtime and configuration
data flow back for reverse checks, conformance validation,
and continuous coherence. This systemic perspective explains
why (i) Case A relies on manual governance (absence of
regeneration and reverse checks despite code-centric models),
(ii) Case B achieves continuous synchronization (tight CI/CD
coupling and metadata-driven generation), and (iii) Case C
achieves uniformity and cross-subsidiary alignment (registry-
driven generation integrated with EA/GRC platforms).
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In conclusion, the AaC characteristics describe the target
capabilities, whereas their robust industrial realization depends
on both characteristic-specific mechanisms (e.g., regeneration,
reverse checks, repository auditing, shared visual and naming
standards) and an enterprise backbone (EA repository, IDP/s-
caffolding, pattern catalogs, policy-as-code, and connectors to
CI/CD and GRC). This refines the original conceptualization
by making explicit the operational and infrastructural prereq-
uisites that render AaC effective and sustainable at scale.

VIII. DISCUSSION AND CONCLUSION

This paper examined how AaC is realized in practice
through a multiple-case study with a European consultancy in
the financial and insurance sector. Across three engagements,
we analyzed how established AaC characteristics manifest in
practice. All characteristics were present, but with uneven
maturity as shown in Table I. Two implementation profiles
emerged. A pipeline-integrated profile (Case B) embeds ar-
chitectural sources in CI/CD pipelines, enabling continuous
generation, versioning, and publication with strong synchro-
nization and provenance. An enterprise-portfolio–integrated
profile (Case C) standardizes architectural data in registries
and integrates with EA/GRC repositories, improving portfolio
visibility and regulatory alignment but with looser coupling
to development workflows. Case A represents a disciplined
baseline with diagram-as-code but largely manual synchro-
nization and validation. The study contributes by (i) providing
empirical grounding for AaC, (ii) assessing the adequacy of
its core characteristics in practice, and (iii) refining the con-
ceptualization with operational and enterprise-level conditions
required for sustainable adoption at scale.

Baseline guidance is broadly applicable, while enterprise-
level integrations (e.g., EA/GRC linkage, audit-ready outputs)
should reflect organizational scale and regulatory context.
Adoption should match maturity. Architecture teams should
start with version-controlled, machine-readable sources, shared
conventions, and clear ownership, then incrementally automate
generation, validation, and publication. In regulated settings,
integrate with EA and governance processes to ensure trace-
ability without compromising readability.

Consultancies should provide context-aware playbooks
aligned with two profiles: pipeline-integrated (delivery-
focused) and enterprise-portfolio–integrated (alignment-
focused). They should supply reusable templates, metadata
schemas, scaffolding, and integration blueprints, ensuring
pipelines can produce audit-ready evidence directly from
architectural sources.

From a research perspective, evaluate AaC beyond
code-centricity by assessing automation depth (gener-
ate–validate–publish) and integration locus (delivery pipeline
vs. enterprise platforms). Report operational prerequisites
(metadata schemas, reverse checks, repository auditing) and
enterprise backbone elements (EA repositories, pattern li-
braries, scaffolding), as these explain outcome variance.

Future research will replicate the study in other domains to
assess transferability and observe AaC maturation over time,

including drift management and governance sustainability. We
will also operationalize outcome-oriented indicators, e.g., lead
time for architectural updates, decision latency, conformance
violations, and time-to-compliance, to evaluate measurable
impacts across cases.

DATA AVAILABILITY

Due to non-disclosure agreements (NDA) with the collab-
orating company, only the materials that the company has
authorized for public release are included in the replication
package [1]. Data analyzed during the study cannot be shared
publicly to ensure compliance with confidentiality obligations.
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