
Test Code Refactoring Unveiled: Where and How
Does It Affect Test Code Quality and Effectiveness?

Luana Martins∗, Valeria Pontillo†, Heitor Costa‡, Filomena Ferrucci†, Fabio Palomba†, Ivan Machado∗
martins.luana@ufba.br, vpontillo@unisa.it, heitor@ufla.br, fferrucci@unisa.it, fpalomba@unisa.it, ivan.machado@ufba.br

∗Federal University of Bahia, Salvador, Brazil
†Software Engineering (SeSa) Lab — University of Salerno, Fisciano, Italy

‡Federal University of Lavras, Lavras, Brazil

Abstract—Context. Refactoring has been widely investigated
in the past in relation to production code quality, yet still
little is known on how developers apply refactoring on test
code. Specifically, there is still a lack of investigation into how
developers typically refactor test code and its effects on test
code quality and effectiveness. Objective. This paper presents
a research agenda aimed to bridge this gap of knowledge by
investigating (1) whether test refactoring actually targets test
classes affected by quality and effectiveness concerns and (2)
the extent to which refactoring contributes to the improvement
of test code quality and effectiveness. Method. We plan to conduct
an exploratory mining software repository study to collect test
refactoring data of open-source JAVA projects from GITHUB and
statistically analyze them in combination with quality metrics,
test smells, and code/mutation coverage indicators. Furthermore,
we will measure how refactoring operations impact the quality
and effectiveness of test code.

Index Terms—Software testing, Test smells, Test refactoring,
Refactoring mining, Mining software repositories

I. INTRODUCTION

Refactoring is an engineered approach that allows develop-
ers to improve the quality of source code without affecting its
external behavior [1]. Over the last decades, researchers have
been proposing automated refactoring recommenders [2] and
investigated how refactoring relates to code quality [3]–[6]. In
particular, researchers identified both benefits and drawbacks
of its application [7]–[9], finding that, while refactoring is
theoretically associated with modifications that do not affect
the external behavior of source code, it may possibly induce
defects [10]–[12], vulnerabilities [13], or even code smells
[14]. These drawbacks are mainly due to refactoring activities
performed manually without the support of automated tools
and interleaved with other code changes [15]. Our research is
motivated by these previous works. On the one hand, most
previous studies focused on the refactoring of production
code and, for this reason, we argue that there is a lack of
investigations into how refactoring is applied to test code. On
the other hand, we do not know if similar effects observed
in previous work may arise with test refactoring, i.e., it may
have some impact on both test quality and effectiveness, for
instance, in cases where refactoring actions target the logic of
a test case. Hence, we point out a limited knowledge on the
effects of refactoring on both test quality and effectiveness.

An improved understanding of test refactoring would have a
number of potential benefits for research and practice. In the

first place, test cases represent a crucial asset for software
dependability: developer’s productivity is partly dependent
on the quality of test cases [16], as these help practitioners
to decide on whether to merge pull requests or deploy the
system [17]. As such, analyzing how refactoring affects test
cases may have a significant impact on practice. Secondly,
researchers have been showing that the design of test code
is approached in a substantially different way with respect to
traditional development [18]. Indeed, the test code must often
interact with external systems, databases, or APIs to set up
test environments and verify the system’s behavior [19]. As a
consequence, test code may suffer from different issues that,
in turn, would require different refactoring operations [20].

For these reasons, new refactoring practices have been
proposed with the aim of dealing with quality or effectiveness
concerns [19]–[21]. While those refactoring practices were
the target of some previous investigations, researchers limited
their focus to how refactoring may influence test smells,
i.e., symptoms of poor test code quality [22]–[24], hence
not providing comprehensive analysis into the nature and
effects of test refactoring. More specifically, we highlight
a lack of knowledge on (1) whether developers apply test
refactoring operations on test classes that are actually affected
by quality or effectiveness concerns, as it is supposed to be
given the definition of refactoring; and (2) what is the effect
of refactoring on both quality and effectiveness of test cases.

This paper aims at addressing this gap of knowledge by
proposing an exploratory empirical study. We first plan to
collect test refactoring data from the change history of open-
source JAVA projects from GITHUB and combine them with
data coming from automated instruments able to profile test
code from the perspective of quality metrics, test smells, and
code/mutation coverage information. Afterward, we plan to
apply statistical analyses to address three main research goals
targeting (1) whether test classes with a low level of quality,
in terms of test smells and code metrics, are associated with
more test refactoring, (2) whether a low level of effectiveness,
in terms of mutation coverage and code coverage, is associated
with more test refactoring, and (3) to what extent the removal
of test smells improve the test code quality and effectiveness.

Our findings might benefit researchers and practitioners
under multiple perspectives. In the first place, our research may
reveal insights into the refactoring types that may deteriorate

1



test code quality and effectiveness. Such information would be
relevant for researchers in both the fields of refactoring and
testing, as it may lead them to (1) extend the knowledge on the
best and bad practices to properly apply test refactoring; (2)
devise novel test refactoring approaches which are aware of
the possible side effects of refactoring, e.g., we may envision
multi-objective search-based refactoring approaches that may
optimize refactoring recommendations based on both quality
and effectiveness attributes; and (3) design novel recommen-
dation systems that may support developers in understanding
how a refactoring would impact different test code properties.
The results would also be useful to practitioners, who may
have additional proof of the side effects of refactoring, hence
possibly being stimulated further on the need to employ
automated refactoring tools. In the second place, our findings
may indicate the nature of the test cases more likely to be
subject to refactoring operations. Researchers might use this
information to define refactoring recommenders and refactor-
ing prioritization approaches, while practitioners may acquire
the awareness of their actions.

II. RELATED WORK

The current literature can be distinguished based on the type
of empirical studies conducted. First, several studies analyzed
change history information to extract knowledge about test
smells and their impact. Spadini et al. [25] investigated ten
open-source projects to find a relation between six test smells
and the change and defect-proneness of both test and produc-
tion code, finding that smelly JUnit tests are more change-
prone and defect-prone than non-smelly ones. In addition,
they found that production code is typically more defect-
prone when tested by smelly tests. As such, the authors did
not target test code refactoring, hence not assessing how the
seemingly test code quality improvement actions performed by
developers affect test code quality and effectiveness, i.e., the
authors looked exactly in the opposite direction of our paper,
focusing on how bad practices affect test code quality.

Wu et al. [26] explored the impact of eliminating test
smells on the production code quality of ten open-source
projects. In this respect, there are two key points that make
our investigation novel: (1) test smell removal does not imply
the application of refactoring: a previous empirical study [27]
indeed showed that 83% of test smell removal activities are
due to feature maintenance actions, i.e., our work can therefore
further the knowledge on how developers apply test code
refactoring; (2) the authors worked, also in this case, in the
opposite direction as our work, focusing on the effects of test
smells on code quality rather than analyzing the impact of
test code refactoring actions. As such, our work extends the
current knowledge by assessing how test refactoring is applied
and what is its impact on multiple aspects of test code, such
as quality and effectiveness.

Peruma et al. [24] investigated the relationship between
refactoring changes and their effect on test smells. The au-
thors used REFACTORING MINER [28] to detect refactoring
operations and the TSDETECT tool [29] to identify the test

smells from unit test files of 250 open-source Android Apps.
Results showed that refactoring operations in test and non-
test files differ, and the refactorings co-occur with test smells.
With respect to the work by Peruma et al. [29], we do not
limit ourselves to the analysis of test smells, but also consider
additional indicators of test code quality and effectiveness: in
this sense, ours will represent a more comprehensive analysis
of the role of test refactoring. Second, we assess the actual ef-
fects of test refactoring on test code quality and effectiveness,
providing insights into how various test refactoring types may
support the evolutionary activities of developers.

A second line of research is represented by qualitative
studies targeting the developer’s perception of test refactor-
ing. Damasceno et al. [30] investigated the impact of test
smell refactoring on internal quality attributes, reporting some
insights that may potentially be in line with the results of
our study, e.g., they let emerge the impact of test smell
refactoring on internal quality attributes. In the first place,
the authors specifically focused on the refactoring of test
smells, while our work targets test code refactoring from a
more general perspective, attempting to assess the extent to
which this is applied to classes suggesting the presence of
quality or effectiveness concerns. Secondly, the results of our
work may possibly provide evidence-based, complementary
insights with respect to what the authors found out in their
qualitative study. Third, our work has a broader scope and,
indeed, it also targets the effectiveness side of the problem.
Soares et al. [22] investigated how developers refactor test
code to eliminate test smells. The authors surveyed 73 open-
source developers and submitted 50 pull requests to assess
developers’ preferences and motivation while refactoring the
test code. The results showed that developers preferred the
refactored test code for most test smells. In another work,
Soares et al. [23] investigated whether the JUnit 5 features
help refactor test code to remove test smells. They conducted
a mixed-method study to analyze the usage of the testing
framework features in 485 popular Java open-source projects,
identifying the features helpful for test smell removal and
proposing novel refactorings to fix test smells. Also in this
case, the authors focused on the refactoring of test smells,
while our study has a broader scope. In addition, while we
do not plan to conduct surveys or interviews—this is part
of our future research agenda—, we will extend the current
body of knowledge by assessing whether test code quality
and effectiveness indicators may trigger refactoring activities,
other than providing a comprehensive overview of how test
refactoring relates to branch and mutation coverage, which is
a premiere of our study.

III. RESEARCH QUESTIONS AND OBJECTIVES

The goal of the empirical study is to analyze the test refac-
toring operations performed by developers over the history
of software projects, with the purpose of understanding (1)
whether low-quality test classes, in terms of structural metrics
and test smells, provide indications on which test classes are
more likely of being refactored, (2) whether test classes with

2



low effectiveness, in terms of code coverage and mutation
coverage, provide indications on which test classes are more
likely of being refactored, and (3) as a consequence, to what
extent test refactoring operations are effective in improving
quality and effectiveness of test classes. In other terms, we are
first interested in assessing the quantity of test refactoring op-
erations performed on classes exhibiting test code quality and
effectiveness issues and, in the second place, the quality of the
test refactoring operations applied in terms of improvements
provided to test code quality and effectiveness. The perspective
is of both researchers and practitioners who are interested in
understanding the relationship and effects of test refactoring
operations on the quality and effectiveness of test classes.

More specifically, our empirical investigation will first aim
at addressing the following research questions (RQs):

RQ1. Are test refactoring operations performed on test
classes having a low level of quality, as indicated by quality
metrics and test smell detectors?

RQ2. Are test refactoring operations performed on test
classes having a low level of effectiveness, as indicated by
code and mutation coverage?

Through RQ1 and RQ2, we aim to address the first objective
of the study, hence understanding whether the low quality and
effectiveness of test classes are associated with more test refac-
toring operations. The results of these two research questions
might have multiple implications for software maintenance,
evolution, and testing researchers. An improved understand-
ing of these aspects may indeed inform researchers on the
characteristics of the test suites that trigger more refactoring
operations, possibly informing researchers on (1) the factors
that are associated with test refactoring and (2) the design of
novel or improved instruments to better support developers
in their activities. For instance, should we discover that test
refactoring is not frequently applied on test classes exhibiting
test smells, this would imply that further research should be
conducted on the motivations leading developers to refactor
test code, other than to how test smell detectors should be
designed to ease the application of refactoring operations.

Upon completion of this investigation, we will further
elaborate on the impact of test refactoring, addressing the
following research questions:

RQ3. What is the effect of test refactoring on test code qual-
ity, as indicated by quality metrics and test smell detectors?

RQ4. What is the effect of test refactoring on test code
effectiveness, as indicated by code and mutation coverage?

Through RQ3 and RQ4, we aim to extend the current
knowledge on the impact of test refactoring, assessing whether
the test code quality and effectiveness increase, decrease or
remain the same after the application of test refactoring oper-
ations. It is worth to remark that addressing these two research
questions would be important independently from the results

obtained by RQ1 and RQ2. Indeed, regardless of the amount
of refactoring operations performed on test classes exhibiting
quality or effectiveness concerns, it would still be possible that
the specific refactoring actions targeting those classes have an
impact. To make our argumentation more practical, consider
the case of the Extract Method refactoring, whose suboptimal
implementation may potentially affect test code effectiveness.
Given a verbose test method with several steps and assertions,
the refactoring enables the extraction of multiple test methods,
which are supposed to be more cohesive and focused on
the verification of specific conditions of production methods.
However, if developers do not appropriately perform such
an extraction, this would potentially change the logic of the
test and be detrimental to test effectiveness. For instance,
consider test T, which verifies two branches, B1 and B2, of
the production method M. In this case, an Extract Method
operation is supposed to split T so that the resulting tests T1
and T2 target B1 and B2 individually. However, should there
be a logical relation between B1 and B2, T2 will still need
to pass through T1 to ensure that the logical relation is still
met: a suboptimal refactoring may overlook this requirement,
possibly not embedding in T2 the statements required to reach
B1. As a result, this operation would affect the overall level
of coverage of the production code.

As such, RQ3 and RQ4 provide an orthogonal view on
the matter. Also in this case, the outcome of our investigation
may lead to implications for research and practice. First, our
findings may help researchers measure the actual, practical im-
pact of test refactoring—this may drive considerations on how
future research efforts should be prioritized, e.g., by favoring
more research on impactful refactoring operations. Second,
our results may increase the practitioner’s awareness of test
refactoring, possibly increasing its application in practice.

To design and report our empirical study, we will follow
the empirical software engineering guidelines by Wohlin et al.
[31] other than the ACM/SIGSOFT Empirical Standards.1

IV. EXPERIMENTAL PLAN

This section reports the research method that we plan to
apply to address our RQs.

A. Context of the study

The context of our investigation will be composed of (i)
empirical study variables, i.e., the independent and dependent
variables that we will statistically analyze, and (ii) software
systems, i.e., the projects that will be mined to collect the
data required to address our research objectives.

Software Systems. The selection of suitable software sys-
tems will be driven by various considerations. First, we will
focus on open-source projects, as we need access to change
history information. Second, we will rely on popular, large
real-world projects having enough releases to collect data
that can be analyzed statistically. Third, we will standardize
the building process to ease dependency management and

1Available at: https://github.com/acmsigsoft/EmpiricalStandards

3



TABLE I: Description of quality metrics as detected by VITRUM [32]

Acronym Quality Metrics Description

LOC Number of Lines Counts the number of lines
NOM Number of Methods Counts the number of methods
WMC Weight Method Class Counts the number of branch instructions in a class
RFC Response for a Class Counts the number of method invocations in a class
AD Assertion density Percentage of assert statements with respect to the total number of statements in a test class
MUT Mutation Coverage Percentage of mutated statements in the production class that is covered by the test
LCOV Line coverage Lines exercised by the test
BCOV Branch coverage Branches exercised by the test

TABLE II: Description of test smells as detected by TSDETECT [29]

Acronym Test Smell Description Precision Recall

AR Assertion Roulette A test method contains assertion statements without an explanation/message 94.7% 90.0%
DA Duplicate Assert A test method that contains more than one assertion statement with the same parameters 85.7% 90.0%
ECT Handling Exception A test method that contains throws statements 100.0% 100.0%
ET Eager Test A test method contains multiple calls to multiple production methods 100.0% 100.0%
GF General Fixture Fields within the setUp method are not utilized by all test methods 95.2% 100.0%
LT Lazy Test Multiple test methods call the same class under test methods 90.9% 100.0%

TABLE III: Description of refactorings detected by TESTREFACTORINGMINER tool

Refactoring Description Precision Recall

Add assert explanation Add an optional parameter into the assert methods to provide an explanatory message 100.0% 78.0%
Extract Class Create a new class and place the fields and methods responsible for the relevant functionality in it 100.0% 100.0%
Extract Method Move a code fragment to a separate new method and replace the old code with a call to the method 99.9% 96.9%
Inline Method Replace calls to the method with the method’s content and delete the method itself 100.0% 98.2%
Parameterize Test Remove duplicate code using the @parameterized test annotation to define a variety of arguments 100.0% 100.0%
Replace @Test anno-
tation w/ assertThrows

Remove @Test annotation and add of assertThrows method 100.0% 93.0%

Replace @Rule anno-
tation w/ assertThrows

Remove @Rule annotation and add of assertThrows method 100.0% 88.0%

Replace try/catch w/
assertThrows

Remove try/catch blocks and add of assertThrows method 100.0% 89.0%

Split method Separate a long function by splitting it into short methods and adding a call for the new methods 100.00% 100.00%

streamline build configurations across all projects. As such,
we plan to use SEART tool2 to select 100 open-source, non-
fork projects from GITHUB that have at least 100 stars, 10
major releases, 1,000 lines of code, and 10 test classes. We will
seek JAVA projects that can be compiled with Maven and Java
8—Java 8 is the most popular Java version used nowadays.3

Should our search identify more than 100 projects, we will
apply random sampling and verify whether the projects were
properly built until we have 100 projects.

It is worth noting that some projects may adopt the so-
called Boy Scout rule, i.e., “Leave every piece of code you
touch cleaner than how they found it”.4 These projects may
be more inclined to the application of refactoring and therefore
we may observe a higher test code quality and effectiveness.
As part of our study, we will manually analyze the contribution
guidelines of the projects selected, looking for any insight
suggesting that those projects follow the Boy Scout rule.
Should we identify a decent amount of projects, we will

2https://seart-ghs.si.usi.ch/
3https://www.jetbrains.com/lp/devecosystem-2021/java/
4The Boy Scout Rule: https://www.oreilly.com/library/view/97-things-eve

ry/9780596809515/ch08.html.

perform an additional analysis, comparing the results obtained
between Boy Scout and non-Boy Scout projects.

Empirical Study Variables. In the context of RQ1 and
RQ2, we are interested in assessing whether refactoring oper-
ations are more likely to be observed on test classes exhibiting
test code quality and effectiveness concerns. As such, we
define the following empirical study variables:

Independent Variables. These are the factors that will be
related to the application of test refactoring, namely (i)
test code quality metrics; (ii) presence of test smells (of
different types); (iii) branch coverage; and (iv) mutation
coverage. Tables I and II list and describe the independent
variables of the study. These metrics will be all computed
across releases of different software systems and will be
statistically analyzed as described later in this section. The
selection of these independent variables is driven by multiple
considerations. First, we consider test code quality metrics
and test smells that were targeted by previous research in
the field [33], [34] and found to impact test code in different
manners [27], [35]. Second, branch and mutation coverage
are widely considered as two key indicators of test code
effectiveness, which may estimate the goodness of test cases

4



in dealing with real defects [36], [37].
Dependent Variables. These are the refactoring operations (of
different types) being observed across releases of different
software systems. To select suitable test refactoring opera-
tions for our purpose, we investigated the literature to elicit
the test refactoring operations that were previously asso-
ciated to our independent variables—we basically surveyed
the previous papers on the matter, discussed in Section II, to
extract the test refactoring types that researchers have been
observing as potentially impacting on testing evolutionary
activities. Table III lists the refactoring operations that will
be targeted, along with a brief description.
When it turns to RQ3 and RQ4, we are interested in

assessing the impact of test refactoring on the test code quality
and effectiveness aspects considered. As such, we need to
swap independent and dependent variables: indeed, in this case
we are interested to observe how refactoring impacts test code
properties rather than the opposite:
Independent Variables. These are the different types of refac-
toring operations (Table III) computed across the releases of
software systems considered.

Dependent Variables. These will be the test code quality and
effectiveness metrics described in Tables I and II, which will
be computed across releases of software systems.
In all RQs we will include a number of control variables,

which will help us better verify the extent to which test
refactoring impacts the variation of test code quality and effec-
tiveness in relation to project- and process-level characteristics
that may impact the dependent variables.
Control Variables. We will first account for the frequency of
releases and activities by the project, as these may provide
insights into the development speed which, in turn, may
impact test code quality and effectiveness. Given a release
Ri, we will compute the number of releases issued within
the last 1, 3, 6, and 12 months. In addition, for each class
Cj within Ri, we will compute the number of commits
performed by developers between the releases Ri−1 and
Ri. We will also consider project-level metrics such as
(1) project size in terms of lines of code; (2) number of
contributors; (3) number of branches; and (4) number of pull
requests. On the one hand, these metrics can well overview
the main characteristics of the project and the community
around it. On the other hand, all these metrics can impact
in various manners test code quality and effectiveness, e.g.,
a higher amount of branches may indicate a higher level of
activity around the project, which in turn can influence the
way test cases are maintained and evolved.

B. Data Collection
We will use different automated tools available in the

literature to extract data on quality and effectiveness metrics,
test smells, and refactoring operations. Then, we will merge
the data to compose our dataset.

Collecting test code quality and effectiveness metrics. To
collect both test code quality and effectiveness metrics (Table

I), we will run VITRUM, a plug-in for the visualization of
test-related metrics in order to calculate five static metrics and
three dynamic metrics from the test code [32]. Note that the
tool uses JACOCO to calculate line and branch coverage, and
PITEST for the mutation coverage. Therefore, we will have to
build the projects to calculate the dynamic metrics.

Collecting test smells. Among the test smell detection
tools available for JAVA code [38], we will use TSDETECT
[29], which is the most accurate tool, with a precision score
ranging from 85% to 100% and a recall score ranging from
90% to 100%. TSDETECT performs a test code static analysis
through an AST (Abstract Syntax Tree) to apply the test smells
detection rules in the test files. A test file in the JUnit testing
framework should follow the naming conventions of either
pre-pending or appending the word ‘‘Test’’ to the name
of the production class under test and at the same package
hierarchy [29]. With the detection rules, the tool can detect (i)
the presence or absence of a test smell in a test class, or (ii) the
number of instances per test smell in a test class. In addition,
the tool receives a configuration of the severity thresholds for
each test smell [39]. We run the tool to identify the number
of instances of the six test smells described in Table II with
default values for the severity thresholds (i.e., the tool reports
all instances of test smells detected).

Collecting refactoring data. To detect test refactoring
operations, we will use the TESTREFACTORINGMINER tool
[40]. The tool is built on top of the state-of-the-art refactoring
mining tool REFACTORINGMINER, which has the highest
precision (99.8%) and recall (97.6%) scores among the cur-
rently available refactoring mining tools [28]. In more detail,
TESTREFACTORINGMINER analyzes the added, deleted, and
changed files between two project versions to detect specific
test refactorings, reaching 100% and 92.5% of precision and
recall scores. The tool operationalizes the detection of all
the refactoring operations considered in the study—Table III
presents the set of test refactoring that we will investigate in
this study. It is worth noting that this set considers various
refactoring operations, such as integrating new technologies
like JUnit 5 or improving the organization of test classes.

Data integration. Although some tools allow a finer gran-
ularity during the code analysis, all of them can also report
the results at the class level. Therefore, we will establish
traceability links between the test classes reported by TS-
DETECT, VITRUM, and TESTREFACTORINGMINER tools,
finally integrating their outcome in a unique data source to
be further analyzed from a statistical standpoint.

C. Data Analysis
We first formulate the working hypotheses that we will

later statistically assess. As for RQ1, given a quality metric
Qmi, with Qmi in {LOC, NOM, WMC, RFC, AD} and a
refactoring refk in the set of refactoring operations considered
in the study, our null hypothesis is the following:
Hn1Qmi−refk . There is no significant difference in terms of

the amount of refk operations performed on test classes
having different values of Qmi.

5



As in RQ1, we will also evaluate the relation between test
refactoring and test smells. Given a test smell Tsi in the set
of test smells considered in the study and refk, we define a
second null hypothesis:
Hn2Tsi−refk . There is no significant difference in terms of

the amount of refk operations performed on test classes
affected and not by Tsi.

As for RQ2, given an effectiveness metric Emi, where Emi

assumes values in the set {Branch Coverage and Mutation
Coverage} and refk, the null hypothesis is the following:
Hn3Emi−refk . There is no significant difference in terms of

the amount of refk operations performed on test classes
having different values of Emi.

As for RQ3, given a quality metric Qmi, a test smell Tsi,
and a refactoring refk, the null hypotheses is:
Hn4Qmi−refk . There is no significant difference in terms of

Qmi before and after the application of refk.
Hn5Tsi−refk . There is no significant difference in the number

of Tsi instances before and after the application of refk.
Finally, as for RQ4, the null hypothesis will be:

Hn6Emi−refk . There is no significant difference in terms of
Emi before and after the application of refk.

If one of the null hypotheses will be statistically rejected, we
will accept the corresponding alternative hypothesis, namely:
An1Qmi−refk . The amount of refk operations on test classes

having different values of Qmi is statistically different.
An2Tsi−refk . The amount of refk operations on test classes

affected and not by Tsi is statistically different.
An3Emi−refk . The amount of refk operations on test classes

having different values of Emi is statistically different.
An4Qmi−refk . The Qmi before and after the application of

refk is statistically different.
An5Tsi−refk . The number of Tsi instances before and after

the application of refk is statistically different.
An6Emi−refk . The Emi before and after the application of

refk is statistically different.
We will then verify the working hypotheses, hence accepting

or rejecting them, by building statistical models.
Statistical modeling for RQ1 and RQ2. To address our first

two research questions, we will devise a Logistic Regression
Model for each refactoring operation considered in the study.
Such a model belongs to the class of Generalized Linear
Models (GLM) [41] and relates a (dichotomous) dependent
variable—in our case, whether or not a particular type of
refactoring is performed—with either continuous and discrete
independent variables—the quality and effectiveness metrics
considered in RQ1 and RQ2.

Before building the statistical model, we plan to assess the
presence of multi-collinearity [42], which arises when two or
more independent variables are highly correlated and can be
predicted one from the other. We will use the vif (Variance
Inflation Factors) function and discard highly correlated vari-
ables, putting a threshold value equal to 5 [42].

For each statistical model, we assess (i) whether each
independent variable is significantly correlated with the de-
pendent variable (using a significance level of α = 5%, and
(ii) quantify this correlation using the Odds Ratio (OR) [43],
which is a measure of the strength of the association between
each independent variable and the dependent variable. Higher
OR values for an independent variable indicate a higher
probability of explaining the dependent variable, i.e., a higher
likelihood that a refactoring operation has been triggered by
the independent variable. Nonetheless, the interpretation of
OR values change depending on the different measurement
scale of the independent variables, i.e., ratio for the test code
quality and effectiveness metrics and categorical for the test
smells. As for the metrics, the OR for an independent variable
indicates the increment of chances for a test class to be subject
of refactoring as a consequence of a one-unit increase of the
independent variable. As for test smells, the OR indicates how
likely a smelly test class is involved in refactoring operations
with respect to a non-affected class.

The statistical significance of the correlation between inde-
pendent and dependent variables will allow us to accept or
reject Hn1Qmi−refk , Hn2Tsi−refk , and Hn3Emi−refk , while
OR values will measure the strengths of the correlations.

Statistical modeling for RQ3 and RQ4. To statistically
assess the impact of test refactoring on test code quality and
effectiveness metrics and smells, we will first collect all the
test classes subject to the refactoring type refk in a generic
release Ri. Afterward, for each of those test classes, we will
compute its value of test code quality and effectiveness metrics
and smells computed on the release Ri and the value of the
metrics and smells computed on the release Ri−1.

We will produce two distributions: the first representing
the metric values (or the number of test smells) in Ri−1,
i.e., before the application of refk; the second representing
the metric values (or the number of test smells) in Ri, i.e.,
after the application of refk. On this basis, we will employ
the non-parametric Wilcoxon Rank Sum Test [44] (with α-
value = 0.05), through which we will accept or reject the null
hypotheses Hn4Qmi−refk , Hn5Tsi−refk , and Hn6Emi−refk .

In addition, we will also rely on the Vargha-Delaney
(Â12) [45] statistical test to measure the magnitude of the
differences observed in the considered distributions. According
to the direction and value given by Â12 we will have a practical
interpretation of our findings, which will depend on the test
code factor considered. Specifically, should the Â12 values be
lower than 0.5, this would imply that:

• The metric values computed on the release Ri−1 are
lower than those on Ri, i.e., the refactoring refk would
have a positive effect on the quality or effectiveness
metric considered—lower metric values in Ri−1 would
indeed indicate that the refactoring induced the increase
of the metric in Ri, hence having a positive effect;

• The number of test smells computed on the release Ri−1

is lower than the one computed on Ri, i.e., the refactoring
refk would have a negative effect, hence suggesting that,

6



rather than improving test code design, the refactoring
induced the emergence of some form of test smells.

Similarly, a Â12 > 0.50 indicates the opposite, hence that
either refk has a negative impact on the considered test code
quality or effectiveness metric, or that the refactoring has a
positive impact of the removal of test smells. Finally, Â12 ==
0.50 points out that the results are identical, i.e., the refactoring
has limited to no effect on the dependent variables.

D. Publication of generated dataset

The dataset that we will collect by merging test code met-
rics, test smells, test effectiveness metrics, and test refactoring
data will be made publicly available in an online repository
[46]. We also plan to release the scripts for the data collection
and analysis that we will use to perform this study.

V. THREATS TO VALIDITY

This section discusses the potential threats that may affect
the validity of our empirical study plan.

Construct validity. A first threat concerns with the criteria
we will use to select software projects: despite the actions
to standardize the building process, we might still fall into
build failures. Should this happen, we will attempt to manually
diagnose the reasons of the failures, trying to fix them - in this
respect, we will exploit recent research [47], [48] reporting
insights on how to fix build failures. In the best case, we
would still be able to build the project. In the worst case, we
would not be able to fix the build failure and, in this case, we
will finally discard the project from our study and replace it
with another project retrieved by using the SEART tool.

As for the set of test smells, structural and dynamic metrics
we will use to assess the test code quality. We will not calculate
all the Chidamber & Kemerer metrics as some of them do
not apply to the context of test code (e.g., Depth Inheritance
Tree). Nevertheless, we have chosen a mix of metrics capturing
the test code size, structural, and dynamic characteristics.
Another threat to validity concerns the identification of test
smells and refactoring operations. We will use tools already
validated and used by the research community. Although the
tools present high precision and recall scores, they might report
some false positive or false negative instances of test smells
or refactorings: in response of this limitation, we will attempt
to perform preliminary, manual investigations to assess the
degree of accuracy of the tools before running them on a large
scale—in this way, we will be able to provide indications on
the confidence level of our conclusions.

Internal Validity. This category of threats to validity con-
cerns by-product changes of other maintenance activities (e.g.,
bug fixes or changes in requirements) that could also contribute
to the removal of test smells. Therefore, the data analysis will
not indicate a causal relationship, but rather that there is a pos-
sibility of a relationship that may be further investigated. We
will attempt to corroborate our quantitative results by means
of some qualitative insights. In addition, we acknowledge test
flakiness as a potential threat to the internal validity which can

impact the reliability of our findings. However, despite being
a severe issue for practitioners, previous investigations found
test flakiness to arise in a limited amount of cases, e.g., Luo
et al. [49] found out that flaky tests affect up to 4.56% of test
cases. In this sense, it is reasonable to believe that the problem
of test flakiness will have a limited impact on our findings.

External Validity. This class of threats to validity mainly
concerns the subject projects of our study. We selected open-
source JAVA projects from GITHUB, which are only a fraction
of the complete picture of open-source software and do
not necessarily represent industrial practices. Therefore, the
results may not generalize to the industrial context and other
programming languages. In addition, we will select projects
based on the number of stars, which may raise some popularity
bias. Replications of our work would be, therefore, beneficial
to corroborate our findings in different contexts: to stimulate
further research, we will release all materials and scripts as
part of an archived online appendix [46].

Conclusion validity. To address how frequently test refac-
toring is performed on test classes affected by quality or
effectiveness concerns, we will use logistic regression mod-
els to identify correlations. Other than highlighting cases of
significant correlations, we will report and discuss OR values.
In addition, to investigate the effect of test refactoring on
test code quality and effectiveness, we will employ well-
established statistical tests such as the Wilcoxon Rank Sum
Test [44] and the Vargha-Delaney (Â12) [45] statistical tests.
Our analysis will be conducted at the granularity of classes
because the tools we plan to employ work at this level. This
may bias our conclusions, as this granularity may be subject
to various confounding variables. On the one hand, this is
a limitation that we unfortunately share with all the other
research works that analyze dynamic test code metrics [50]. On
the other hand, we plan for the inclusion of multiple process-
and project-level control variables, through which we will be
able to partially mitigate this threat to validity.

An additional point to remark is that our data collection
procedure cannot distinguish between changes that were meant
as refactoring and other changes where refactoring was applied
as part of other modifications. We might have mitigated this
limitation by extracting refactoring changes through the anal-
ysis of issues and pull requests, i.e., collecting changes explic-
itly intended as refactoring. Nonetheless, such an alternative
method could have biased even further the conclusions drawn
for two reasons connected to the availability and reliability of
the information available within the developers’ discussions
on GITHUB. More particularly:

Availability. Previous studies established that developers per-
form “floss refactoring”, combining refactoring operations
and behavioral change edits within individual commits [15].
From a practical standpoint, this means that developers do
not often apply refactoring for the sake of refactoring source
code, but as an instrument to perform other changes, e.g., to
simplify a piece of code before making further evolutionary
changes. As such, it is unlikely to find “pure” refactoring

7



changes or discussions, in the form of issues or pull requests,
around refactoring operations to be applied.

Reliability. Literature found that developers not only rarely
document refactoring activities explicitly [51], [52], but also
that when they do, they are inconsistent [53], i.e., labeling
changes as refactoring, although no refactoring is done at
all. Other researchers found out that the term “refactoring”
is misused, i.e., developers do not often correctly distinguish
between refactoring changes and normal code modifications
[54]. In this respect, the seminal paper by Murphy-Hill et
al. [55] reported that “messages in version histories are
unreliable indicators of refactoring activities. This is due
to the fact that developers do not consistently report/doc-
ument refactoring activities”. This latter observation was
also backed up by the findings obtained by Ratzinger et
al. [56], who discovered that the extraction of refactoring
documentation from repositories may lead to several false
positives, as the words used by developers are too generic
and do not often refer to real refactoring operations.
As a consequence, the analysis of issues and pull requests

would have led to unreliable conclusions. On the contrary, the
goal of a statistical study is exactly that to identify hidden
relations between dependent and independent variables while
controlling for possible confounding effects [57]: we believe
that such an approach better fits our research goals. Through
a large-scale, statistical investigation, we may indeed end up
discovering the intrinsic factors associated with the refactoring
actions performed by developers, finally providing evidence of
how test refactoring is done in practice.

VI. CONCLUSION

The ultimate goal of our research plan is to understand
whether the test code quality and effectiveness provide indica-
tions of which test classes are more likely of being refactored
and to what extent test refactoring operations can improve
the test code quality and effectiveness. We will conduct this
study on a set of 100 open-source JAVA projects, starting
from the collection of data on the test code quality, test
smells, and refactoring operations arising in the major releases
of the projects. Then, we will employ statistical approaches
to address the goals of our investigation and, based on the
conclusions we will be able to draw, finally provide actionable
items and implications for researchers and practitioners.

As an outcome of our exploratory study, we expect to
provide the following key contributions:

1) An empirical understanding of the factors triggering test
refactoring operations, which comprises an analysis of
how test code quality and effectiveness come into play;

2) Evidence of the impact of test refactoring on test code
quality and effectiveness;

3) An online appendix which will provide all material and
scripts employed to address the goals of the study.

ACKNOWLEDGMENT

This study was financed in part by the Coordenação
de Aperfeiçoamento de Pessoal de Nı́vel Superior –

Brasil (CAPES) – Finance Code 001; and FAPESB grants
BOL0188/2020 and PIE0002/2022. Fabio is supported by the
Swiss National Science Foundation through the SNF Project
No. PZ00P2 186090 (TED).

REFERENCES

[1] M. Fowler, Refactoring: improving the design of existing code. USA:
Addison-Wesley Longman Publishing Co., Inc., 1999.

[2] G. Bavota, A. De Lucia, A. Marcus, and R. Oliveto, “Recommending
refactoring operations in large software systems,” Recommendation
Systems in Software Engineering, pp. 387–419, 2014.

[3] M. I. Azeem, F. Palomba, L. Shi, and Q. Wang, “Machine learning
techniques for code smell detection: A systematic literature review and
meta-analysis,” IST, vol. 108, pp. 115–138, 2019.

[4] E. V. de Paulo Sobrinho, A. De Lucia, and M. de Almeida Maia, “A
systematic literature review on bad smells–5 w’s: which, when, what,
who, where,” IEEE TSE, vol. 47, no. 1, pp. 17–66, 2018.

[5] B. Du Bois, S. Demeyer, and J. Verelst, “Refactoring - improving
coupling and cohesion of existing code,” in 11th Working Conf. on
Reverse Engineering, 2004, pp. 144–151.

[6] A. Chávez, I. Ferreira, E. Fernandes, D. Cedrim, and A. Garcia,
“How does refactoring affect internal quality attributes? a multi-project
study,” in Proceedings of the XXXI Brazilian Symposium on Software
Engineering, ser. SBES ’17. New York, NY, USA: Association for
Computing Machinery, 2017, p. 74–83.

[7] J. Al Dallal, “Identifying refactoring opportunities in object-oriented
code: A systematic literature review,” IST, vol. 58, pp. 231–249, 2015.

[8] A. A. B. Baqais and M. Alshayeb, “Automatic software refactoring: a
systematic literature review,” Software Quality Journal, vol. 28, no. 2,
pp. 459–502, 2020.

[9] G. Lacerda, F. Petrillo, M. Pimenta, and Y. G. Guéhéneuc, “Code
smells and refactoring: A tertiary systematic review of challenges and
observations,” JSS, vol. 167, p. 110610, 2020.

[10] M. Di Penta, G. Bavota, and F. Zampetti, “On the relationship between
refactoring actions and bugs: a differentiated replication,” in Proceedings
of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
2020, pp. 556–567.

[11] G. Bavota, B. De Carluccio, A. De Lucia, M. Di Penta, R. Oliveto, and
O. Strollo, “When does a refactoring induce bugs? an empirical study,”
in 2012 IEEE 12th International Working Conference on Source Code
Analysis and Manipulation. IEEE, 2012, pp. 104–113.

[12] I. Ferreira, E. Fernandes, D. Cedrim, A. Uchôa, A. C. Bibiano,
A. Garcia, J. a. L. Correia, F. Santos, G. Nunes, C. Barbosa, B. Fonseca,
and R. de Mello, “The buggy side of code refactoring: Understanding
the relationship between refactorings and bugs,” in Proceedings of
the 40th International Conference on Software Engineering: Companion
Proceeedings, ser. ICSE ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 406–407. [Online]. Available:
https://doi.org/10.1145/3183440.3195030

[13] E. Iannone, Z. Codabux, V. Lenarduzzi, A. De Lucia, and F. Palomba,
“Rubbing salt in the wound? a large-scale investigation into the effects
of refactoring on security,” Empirical Software Engineering, vol. 28,
no. 4, p. 89, 2023.

[14] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta, A. De Lucia,
and D. Poshyvanyk, “When and why your code starts to smell bad,”
in 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, vol. 1. IEEE, 2015, pp. 403–414.

[15] E. Murphy-Hill and A. P. Black, “Why don’t people use refactoring
tools?” in Proceedings of the 1st Workshop on Refactoring Tools, 2007,
pp. 61–62.

[16] J. Micco, “The state of continuous integration testing@ google,” 2017.
[17] G. Grano, C. De Iaco, F. Palomba, and H. C. Gall, “Pizza versus pinsa:

On the perception and measurability of unit test code quality,” in 2020
IEEE Int.l Conf. on Software Maintenance and Evolution (ICSME).
IEEE, 2020, pp. 336–347.

[18] G. Meszaros, xUnit test patterns: Refactoring test code. Pearson
Education, 2007.

[19] G. Meszaros, S. M. Smith, and J. Andrea, “The test automation
manifesto,” ser. Extreme Programming and Agile Methods - XP/Agile
Universe 2003, F. Maurer and D. Wells, Eds., Springer Berlin Heidel-
berg. Berlin, Heidelberg: Springer, 2003, pp. 73–81.

8



[20] E. M. Guerra and C. T. Fernandes, “Refactoring test code safely,” in Int.l
Conf. on Software Engineering Advances (ICSEA 2007). New York,
NY, USA: IEEE, 2007, pp. 44–44.

[21] A. Deursen, L. M. Moonen, A. Bergh, and G. Kok, “Refactoring test
code,” Centre for Mathematics and Computer Science, NLD, Tech. Rep.,
2001.

[22] E. Soares, M. Ribeiro, G. Amaral, R. Gheyi, L. Fernandes, A. Garcia,
B. Fonseca, and A. Santos, “Refactoring test smells: A perspective from
open-source developers,” in Proceedings of the 5th Brazilian Symposium
on Systematic and Automated Software Testing, ser. SAST 20. New
York, NY, USA: Association for Computing Machinery, 2020, p. 50–59.

[23] E. Soares, M. Ribeiro, R. Gheyi, G. Amaral, and A. M. Santos,
“Refactoring test smells with junit 5: Why should developers keep up-
to-date,” IEEE TSE, pp. 1–1, 2022.

[24] A. Peruma, C. D. Newman, M. W. Mkaouer, A. Ouni, and F. Palomba,
“An exploratory study on the refactoring of unit test files in android
applications,” in Proceedings of the 42nd Int.l Conf. on Software Engi-
neering Workshops, ser. ICSEW’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 350–357.

[25] D. Spadini, F. Palomba, A. Zaidman, M. Bruntink, and A. Bacchelli,
“On the relation of test smells to software code quality,” in 2018 IEEE
Int.l Conf. on Software Maintenance and Evolution (ICSME). New
York, NY, USA: IEEE, 2018, pp. 1–12.

[26] H. Wu, R. Yin, J. Gao, Z. Huang, and H. Huang, “To what extent can
code quality be improved by eliminating test smells?” in 2022 Int.l Conf.
on Code Quality (ICCQ). New York, NY, USA: IEEE, 2022, pp. 19–26.

[27] D. J. Kim, T.-H. P. Chen, and J. Yang, “The secret life of test smells-
an empirical study on test smell evolution and maintenance,” EMSE,
vol. 26, no. 5, pp. 1–47, 2021.

[28] N. Tsantalis, A. Ketkar, and D. Dig, “Refactoringminer 2.0,” IEEE TSE,
vol. 48, no. 3, pp. 930–950, 2022.

[29] A. Peruma, K. Almalki, C. D. Newman, M. W. Mkaouer, A. Ouni, and
F. Palomba, “tsdetect: an open source test smells detection tool,” ser.
Symposium on the Foundations of Software Engineering, Association
for Computing Machinery. ACM, 2020.

[30] H. Damasceno, C. Bezerra, E. Coutinho, and I. Machado, “Analyzing
test smells refactoring from a developers perspective,” in Proceedings
of the XXI Brazilian Symposium on Software Quality, ser. SBQS ’22.
New York, NY, USA: Association for Computing Machinery, 2023.

[31] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering. Springer Science
& Business Media, 2012.

[32] F. Pecorelli, G. Di Lillo, F. Palomba, and A. De Lucia, “Vitrum: A
plug-in for the visualization of test-related metrics,” in Proceedings of
the Int.l Conf. on Advanced Visual Interfaces, ser. AVI’20. New York,
NY, USA: Association for Computing Machinery, 2020.

[33] G. Catolino, F. Palomba, A. Zaidman, and F. Ferrucci, “How the experi-
ence of development teams relates to assertion density of test classes,” in
2019 IEEE Int.l Conf. on Software Maintenance and Evolution (ICSME).
IEEE, 2019, pp. 223–234.

[34] F. Pecorelli, F. Palomba, and A. De Lucia, “The relation of test-related
factors to software quality: a case study on apache systems,” EMSE,
vol. 26, pp. 1–42, 2021.

[35] D. Spadini, F. Palomba, A. Zaidman, M. Bruntink, and A. Bacchelli,
“On the relation of test smells to software code quality,” in 2018 IEEE
Int.l Conf. on Software Maintenance and Evolution (ICSME), 2018, pp.
1–12.

[36] P. S. Kochhar, D. Lo, J. Lawall, and N. Nagappan, “Code coverage and
postrelease defects: A large-scale study on open source projects,” IEEE
Transactions on Reliability, vol. 66, no. 4, pp. 1213–1228, 2017.

[37] M. Papadakis, D. Shin, S. Yoo, and D.-H. Bae, “Are mutation scores
correlated with real fault detection? a large scale empirical study on the
relationship between mutants and real faults,” in Proceedings of the 40th
Int.l Conf. on Software Engineering, 2018, pp. 537–548.

[38] W. Aljedaani, A. Peruma, A. Aljohani, M. Alotaibi, M. W. Mkaouer,
A. Ouni, C. D. Newman, A. Ghallab, and S. Ludi, “Test smell detection
tools: A systematic mapping study,” ser. Evaluation and Assessment
in Software Engineering. New York, NY, USA: Association for
Computing Machinery, 2021, p. 170–180.

[39] D. Spadini, M. Schvarcbacher, A.-M. Oprescu, M. Bruntink, and A. Bac-
chelli, “Investigating severity thresholds for test smells,” in Proceedings
of the 17th Int.l Conf. on Mining Software Repositories, ser. MSR ’20.
New York, NY, USA: Association for Computing Machinery, 2020, p.
311–321.

[40] L. Martins, H. Costa, M. Ribeiro, F. Palomba, and I. Machado, “Au-
tomating test-specific refactoring mining: A mixed-method investiga-
tion,” in Proceedings of the 23rd IEEE International Working Conference
on Source Code Analysis and Manipulation, 2023.

[41] J. A. Nelder and R. W. Wedderburn, “Generalized linear models,”
Journal of the Royal Statistical Society: Series A (General), vol. 135,
no. 3, pp. 370–384, 1972.

[42] R. M. O’brien, “A caution regarding rules of thumb for variance inflation
factors,” Quality & quantity, vol. 41, pp. 673–690, 2007.

[43] J. M. Bland and D. G. Altman, “The odds ratio,” Bmj, vol. 320, no.
7247, p. 1468, 2000.

[44] P. E. McKnight and J. Najab, “Mann-whitney u test,” The Corsini
encyclopedia of psychology, pp. 1–1, 2010.

[45] A. Vargha and H. D. Delaney, “A critique and improvement of the cl
common language effect size statistics of mcgraw and wong,” Journal
of Educational and Behavioral Statistics, vol. 25, no. 2, pp. 101–132,
2000.

[46] “Data collection and analysis,” 2023, Accessed on 12.07.2023. [Online].
Available: https://figshare.com/s/dd0730e0036ebe4f878b

[47] M. Tufano, F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia,
and D. Poshyvanyk, “There and back again: Can you compile that
snapshot?” Journal of Software: Evolution and Process, vol. 29, no. 4,
p. e1838, 2017.

[48] M. Maes-Bermejo, M. Gallego, F. Gortázar, G. Robles, and J. M.
Gonzalez-Barahona, “Revisiting the building of past snapshots—a repli-
cation and reproduction study,” EMSE, vol. 27, no. 3, p. 65, 2022.

[49] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical analysis of
flaky tests,” in Proceedings of the 22nd ACM SIGSOFT Int.l Symposium
on Foundations of Software Engineering, 2014, pp. 643–653.

[50] J. Kumar Chhabra and V. Gupta, “A survey of dynamic software
metrics,” Journal of computer science and technology, vol. 25, pp. 1016–
1029, 2010.

[51] P. Weißgerber and S. Diehl, “Identifying refactorings from source-code
changes,” in 21st IEEE/ACM international conference on automated
software engineering (ASE’06). IEEE, 2006, pp. 231–240.

[52] P. Weißgerber, B. Biegel, and S. Diehl, “Making programmers aware of
refactorings.” in WRT, 2007, pp. 58–59.

[53] E. A. AlOmar, A. Peruma, M. W. Mkaouer, C. Newman, A. Ouni, and
M. Kessentini, “How we refactor and how we document it? on the
use of supervised machine learning algorithms to classify refactoring
documentation,” Expert Systems with Applications, vol. 167, p. 114176,
2021.

[54] Z. Di, B. Li, Z. Li, and P. Liang, “A preliminary investigation of self-
admitted refactorings in open source software (s),” in Int.l Conf. on
Software Engineering and Knowledge Engineering, vol. 2018. KSI
Research Inc. and Knowledge Systems Institute Graduate School, 2018,
pp. 165–168.

[55] E. Murphy-Hill, C. Parnin, and A. P. Black, “How we refactor, and how
we know it,” IEEE TSE, vol. 38, no. 1, pp. 5–18, 2011.

[56] J. Ratzinger, T. Sigmund, and H. C. Gall, “On the relation of refactorings
and software defect prediction,” in Proceedings of the 2008 Int.l working
Conf. on MSR, 2008, pp. 35–38.

[57] D. A. Freedman, Statistical models: theory and practice. cambridge
university press, 2009.

9


