
E2EGit: A Dataset of End-to-End Web Tests in
Open Source Projects

Sergio Di Meglio §, Luigi Libero Lucio Starace §, Valeria Pontillo ¶, Ruben Opdebeeck ¶,
Coen De Roover ¶, Sergio Di Martino §

§ Department of Electrical Engineering and Information Technology, University of Naples Federico II, Italy
Email: (sergio.dimeglio, luigiliberolucio.starace, sergio.dimartino)@unina.it
¶ Software Languages (SOFT) Lab, Vrije Universiteit Brussel, Belgium

Email: (valeria.pontillo, ruben.denzel.opdebeeck, coen.de.roover)@vub.be

Abstract—End-to-end (E2E) testing is a software validation
approach that simulates realistic user scenarios throughout
the entire workflow of an application. In the context of web
applications, E2E testing involves two activities: Graphic User
Interface (GUI) testing, which simulates user interactions with
the web app’s GUI through web browsers, and performance
testing, which evaluates system workload handling. Despite its
recognized importance in delivering high-quality web applica-
tions, the availability of large-scale datasets featuring real-world
E2E web tests remains limited, hindering research in the field.

To address this gap, we present E2EGit, a comprehensive
dataset of non-trivial open-source web projects collected on
GITHUB that adopt E2E testing. By analyzing over 5,000
web repositories across popular programming languages (JAVA,
JAVASCRIPT, TYPESCRIPT and PYTHON), we identified 472
repositories implementing 43,670 automated Web GUI tests with
popular browser automation frameworks (SELENIUM PLAY-
WRIGHT, CYPRESS, PUPPETEER), and 84 repositories that fea-
tured 271 automated performance tests implemented leveraging
the most popular open-source tools (JMETER, LOCUST). Among
these, 13 repositories implemented both types of testing for a total
of 786 Web GUI tests and 61 performance tests. The dataset is
available on ZENODO (DOI: 10.5281/zenodo.14234731).

Index Terms—End-to-End Testing, Web GUI Testing, Perfor-
mance Testing, GitHub-Minining, Web Applications

I. INTRODUCTION

End-to-End (E2E) testing is essential for ensuring the relia-
bility and quality of software applications, especially for web
systems used by millions of people across industries like com-
merce, banking, and others [1], [2]. By validating end-to-end
workflows from the user’s perspective, E2E testing ensures that
all components of an application work together seamlessly,
providing a smooth and reliable user experience [3], [4]. This
type of testing includes two main activities: Graphical User
Interface (GUI) testing and performance testing.

The former involves simulating user interactions with the
application through a browser, such as navigating between
pages, submitting forms, or clicking buttons [1]. The latter
measures how well a system handles varying workloads. In
web contexts, these workloads are defined by user sessions,
which consist of a series of network requests (such as HTTP,
WSS) made during interactions with the system [5], [6]. While
both testing practices can be performed manually, this ap-
proach is often prone to errors and less effective in replicating
complex, real-world scenarios —especially for performance

testing. To overcome these limitations, over the last few years,
frameworks and tools for automation have been proposed [7].
For Web GUI testing, popular browser automation frameworks
like SELENIUM, CYPRESS, PLAYWRIGHT, and PUPPETEER
are used to control browsers and simulate user actions [8],
[9]. In the performance testing domain, open-source tools like
APACHE JMETER and LOCUST are widely used to simulate
web server workloads, which are typically defined by one or
more user sessions (e.g., Thread Group in APACHE JMETER
and TaskSet in LOCUST) that simulate several concurrent users
adopting the same behavior over time [10], [11].

Despite end-to-end (E2E) testing being crucial for ensuring
high-quality software and delivering a positive user experience,
it is often overlooked in practice [4]. This neglect is mirrored
in the literature, where the limited availability of datasets in
the context of Web GUI and performance testing has hindered
research progress in these areas [12]. Although some Web
GUI test datasets do exist, they are often based on small-
scale projects such as university assignments, or they only
include projects that use a particular framework or a particular
programming language. For performance testing, to the best of
our knowledge, no dataset has been published so far, probably
because companies rarely share such tests publicly [13], [14].

This paper aims to fill this gap by presenting E2EGit [15],
a comprehensive dataset of non-trivial web projects hosted on
GITHUB that adopt E2E testing practices. To this end, we
analyzed 5,563 non-trivial web repositories developed using
at least one of the most popular programming languages for
web development, i.e., JAVA, JAVASCRIPT, TYPESCRIPT, and
PYTHON. Each repository was processed to identify 1) the
presence of Web GUI tests using the four most used browser
automation frameworks, i.e., SELENIUM, PLAYWRIGHT, CY-
PRESS, and PUPPETEER; and 2) the presence of performance
tests conducted with the most popular open-source tools,
JMETER and LOCUST [13], [16].

At the end of the mining process, we identified 472 reposi-
tories containing Web GUI tests, comprising 43,670 test cases,
and 84 repositories containing performance tests, totaling 271
test cases. Among these, 13 repositories implemented both
types of testing, contributing 786 Web GUI tests and 61
performance tests, which are included in the respective totals.

https://zenodo.org/records/14234731


II. RESEARCH METHOD

This section describes the mining pipeline shown in Figure 1
for collecting and analyzing repositories from GITHUB. In the
first step, repositories are collected and filtered to identify web
repositories with non-trivial complexity. In the second phase,
two separate analyses are performed after locally cloning the
repositories to identify GUI and performance tests.

A. Data Collection

For collecting the repository, we used the SEART tool1,
developed by Dabic et al. [17], which is widely used in
the literature for mining GITHUB repositories. At the time
of collection in May 2024, SEART reported a subset of
1,401,170 repositories. Due to the large amount of repositories,
we applied a filtering process to exclude “toy” projects. This
filtering phase followed well-established criteria from prior
research [18]–[20], specifically:

• Number of commits: greater than or equal to 2000;

• Number of contributors: greater than or equal to 10;

• Number of stargazers: greater than or equal to 100;

• Is fork: must be False;

These criteria reduced the sample to 14,053 repositories. Since
our study refers to web applications, we further refined the
selection by including only non-trivial repositories that had at
least one dependency on a web framework. However, given
the wide variety of web programming technology, our dataset
needs to be restricted to the most widely adopted frameworks
(e.g., SPRING BOOT, REACT and ANGULAR according to
[21]; see the online appendix [15] for the full list of considered
frameworks) for each of the four most popular programming
languages in web development (i.e., JAVASCRIPT, TYPE-
SCRIPT, PYTHON and JAVA according to [22]). After this
filtering, we are left with 5,563 web applications.

B. Web GUI Test Search

This phase consists of three steps and it was applied to each
web application repository to identify Web GUI tests:

1) Checking dependencies. We analyzed the projects’ de-
pendencies to identify the use of browser automation
frameworks, focusing on the most commonly used ones,
according to [23], namely SELENIUM, PLAYWRIGHT,
PUPPETEER and CYPRESS. The search was done by
extracting dependencies from dependency management
files: pom.xml and build.gradle for projects in
JAVA, package.json for JAVASCRIPT and TYPE-
SCRIPT, and requirements.txt for PYTHON.

2) Finding Web GUI test files. If the repository includes at
least one of the above dependencies, we have identified
potential Web GUI tests, i.e., files that import browser
automation frameworks.

3) Validation of Web GUI tests. We automatically analyzed
each candidate GUI test source file to determine whether

1https://seart-ghs.si.usi.ch/

the identified automation framework dependencies were
used for web GUI testing. Specifically, we verified the
presence of a test engine alongside the implemented test
code. Our focus was on widely-used test engines [24],
including JUNIT and TESTNG for JAVA; JEST, MOCHA,
and JASMINE for JAVASCRIPT and TYPESCRIPT; and
PYTEST and UNITTEST for PYTHON. Each test en-
gine has specific syntax, such as @Test in JUNIT and
TESTNG, it or test in JEST, MOCHA, and JASMINE,
and test_ in PYTEST and UNITTEST.

This process allowed us to identify 472 repositories con-
taining at least one implemented Web GUI test.

C. Performance Test Search

This phase, performed in parallel to the previous one,
aims instead to search for performance tests. We focused
on LOCUST and APACHE JMETER, as they are recognized
as the most representative open-source performance testing
tools, widely adopted in both academic research and enterprise
contexts [13], [16]. The identification of performance tests
involved distinct processes tailored to each tool:

• LOCUST. As a Python-based framework, LOCUST must
be explicitly imported into the test code. The process
begins by checking for the LOCUST dependency in the
requirements.txt file. When the dependency is
found, the pipeline searches for Python files within the
repository that import LOCUST.

• APACHE JMETER. The identification process for JME-
TER is straightforward, as it does not require depen-
dencies and import analyses. Indeed, JMETER tests are
stored as files with a distinctive .jmx extension. To
identify performance tests created with JMETER, we
simply searched for files with the .jmx extension.

In the final step, Performance Test Validation, we verified
whether the identified test artifacts were genuinely intended
for performance testing. To this end, we ensured that each
test included at least one ThreadGroup or TaskSet and
at least one network request associated with it. For JMETER,
this validation was conducted automatically by parsing and
analyzing the .jmx test files. For LOCUST, the analysis was
performed manually by the first two authors of this paper.
After validation, we identified 84 repositories containing at
least one implemented performance test.

III. E2EGIT DATASET

The E2EGit dataset comprises 43,670 Web GUI tests from
472 repositories and 271 performance tests from 84 reposi-
tories. Notably, the dataset also includes 13 repositories that
integrate both types of testing, featuring 786 Web GUI tests
and 61 performance tests. On average, repositories with Web
GUI testing contain 92.5 tests, while those with performance
testing feature an average of 5 tests. Table I provides an
overview of the dataset based on the analyzed frameworks
and tools.

The repositories exhibit diverse characteristics, as high-
lighted by the boxplots in Figure 2. Project age ranges from

https://seart-ghs.si.usi.ch/


Figure 1: Overview of the mining pipeline

Table I: Overview of repositories and tests collected in E2EGit,
categorized by the frameworks and tools used for Web GUI
testing and performance testing. Notably, some web applica-
tions adopt multiple frameworks for Web GUI tests, which
results in overlapping counts across categories.

Web GUI Testing
Browser Automation Framework Num. of Repos Num. of Tests
SELENIUM 87 10,464

PLAYWRIGHT 197 18,175

PUPPETEER 20 302

CYPRESS 187 14,733

Performance Testing
Load Generator Tool Num. of Repos Num. of Tests
APACHE JMETER 72 244

LOCUST 13 27

Number of Stars Number of Watchers Project Age (years)

Number of Commits Number of Contributors Number of LOCs

0 5000 10000 15000 0 100 200 300 4 8 12

10000 20000 30000 0 100 200 300 400 0e+00 5e+05 1e+06

Testing GUI Performance

Figure 2: Distribution of Repository Characteristics for
Projects with Web GUI or Performance Testing

newly initiated projects to well-established, decade-old ones,
while codebase sizes vary from a few thousand lines of code to
over a million. Activity indicators such as the number of com-
mits and contributors also differ significantly. Some projects
are highly active and collaborative, involving hundreds of
contributors, while others exhibit minimal maintenance.

The dataset is stored as an SQLite database and its schema
is reported in Figure 3. The repository table contains infor-
mation on 1.5 million repositories collected using SEART in

May 2024, with 34 fields detailing repository characteristics,
including the number of commits, number of contributors, and
last commit on which our mining pipeline was executed. The
subset non trivial repository table includes repositories that
passed the two filtering stages described in Section II. For
each repository, we specify the use of frameworks for JAVA,
JAVASCRIPT, TYPESCRIPT, or PYTHON. For repositories us-
ing multiple frameworks, the corresponding fields (e.g., is_-
web_java) are set to true, and the web_dependencies
field lists all the detected web frameworks.

Details about the detected web GUI tests are reported in
the gui testing test details table, providing information at
the test file level. Each row represents a test file detailing
the file path, the browser automation framework used, the test
engine employed, and the number of tests implemented in
the file. For ease of analysis, the final dataset also includes a
gui testing repo details (not shown in Figure 3 for brevity),
aggregating web GUI test data at repository level. For each
repository with web GUI tests, this table summarizes the
number of test files using each considered framework, the
employed test engines, and the total number of identified tests.

Concerning performance testing, the performance test-
ing test details table consists of 410 rows, one per each
identified ThreadGroup or TaskSet. This table includes
details such as the file path, whether the test uses APACHE
JMETER or LOCUST, and extracted parameters like the num-
ber of thread groups, concurrent users, and requests. It is worth
noting that some fields may be absent. For example, external
files (e.g., CSVs defining workloads) might be unavailable,
or in the case of LOCUST tests, parameters like duration and
concurrent users may be specified via the command line rather
than within the test files themselves. Moreover, some fields
(e.g., number_of_users) may contain parametric expres-
sions of the form ${foo}, referring to specific environment
variables which we were not able to determine during the
mining process. In this case, the field contains the parametric
expression as a string.

IV. POSSIBLE USES OF THE E2EGIT DATASET

The E2EGit dataset is particularly valuable because it con-
tains a large number of tests from non-trivial repositories with
an extensive commit history that make use of diverse web and
automation frameworks. This makes it suitable for a variety
of purposes.



repository

name: string [PK]
is_fork: boolean
commits: integer
watchers: integer
// additional fields omitted

non_trivial_repository

name: string [PK, FK]
is_web_java: boolean
is_web_python: boolean
is_web_javascript: boolean
is_web_typescript: boolean
web_dependencies: string

gui_testing_test_details

name: string [FK]
test_path: string [PK]
is_selenium_java: boolean
// same for javascript/typescript/python
is_playwright_java: boolean
// same for javascript/typescript/python
is_puppeteer_js: boolean
// same for typescript/python
is_cypress_js: boolean
// same for typescript
with_junit: boolean
// same for other test runners
number_of_tests: integer

performance_testing_test_details

name: string [FK]
test_path: string [PK]
threadgroup_taskset_id: integer [PK]
is_jmeter: boolean
is_locust: boolean
threadgroup_taskset_name: string
number_of_users: string
ramp_up: string
loop_cound: string
duration: string
number_of_requests: string

1 0..1

1

0..*

1

0..*

Figure 3: E2EGit dataset schema

One key area of exploration is test quality and maintenance.
Researchers can investigate the presence of “test smells” [25],
such as redundancy, fragility, or poor structure, to assess
the overall quality of tests. This analysis can guide the
application of refactoring techniques to improve test design,
maintainability, and robustness. For instance, the dataset could
enable studies on how systematic refactoring of tests can
mitigate identified smells, reduce maintenance overhead, and
enhance the stability of test suites over time. Additionally, the
dataset could support studies on the impact of application code
changes on tests, revealing patterns in how code modifications
affect test stability and reliability.

Furthermore, the dataset could also be a valuable resource
for creating specialized datasets to train machine learning
models and Large Language Models (LLMs). This is partic-
ularly relevant for advancing research in areas like automatic
test generation and repair, which are still in their early stages
[26]. Furthermore, E2EGit can aid research requiring systems
with multiple versions and identified bugs for evaluation, such
as test case prioritization and regression testing. Existing stud-
ies often rely on outdated applications [12], making E2EGit a
more current and robust alternative.

From an industry perspective, E2EGit could provide valu-
able insights for performance testing, offering examples of
how workloads are structured for different types of applica-
tions. This information can help refine performance testing
strategies for similar projects [27]. Finally, the dataset can be
leveraged for benchmarking testing tools, enabling compar-
isons of browser automation frameworks and load generation
tools to evaluate their performance in real-world applications.

V. THREATS TO VALIDITY

Internal Validity. The main internal threat is the selection of
web frameworks and E2E testing tools, which may have
led to the exclusion of some repositories or tests. However,
we included the four most popular programming languages
[22], as well as the 15 widely used web frameworks for each
[21], and the most prominent browser automation and load

generation tools [13]. We are confident the dataset reflects
the current state of E2E testing adoption on GITHUB.

External Validity. A key threat is the focus on open-source
projects from GITHUB, which represents only a subset of the
broader software ecosystem. As a result, the findings may
not generalize to other contexts, such as industrial projects.
To address this, all materials have been made publicly
available to encourage further research and validation in
diverse settings [15].

VI. RELATED WORK

This section examines the literature on dataset availability
for Web GUI and performance testing in web applications,
highlighting significant gaps. For performance testing, to the
best of our knowledge, no studies have focused on creating
public datasets, likely due to companies keeping such tests
private [13], [14].

In contrast, some efforts have been made for Web GUI
testing. Christophe et al. [28] in a dated study investigated
the prevalence of Web GUI testing written with SELENIUM in
open-source JAVA projects, making the data available. Gortazar
et al. [29] proposed collecting GUI test datasets from GITHUB
using 12 simple naming criteria, resulting in 114 projects.
However, their methodology lacked explicit verification steps,
risking false positives. Sanchez et al. [30] built a small dataset
with six bugs and a few GUI tests across three student-
developed applications. Fuad et al. [31] introduced the WebEV
dataset, comprising Web GUI tests from 100 GITHUB projects.
Their work, however, focused solely on the CYPRESS frame-
work, the dataset is currently unavailable, as the repository
remains empty at the time of writing. Our dataset aims to fill
this gap by offering a comprehensive collection of repositories
with automated tests for Web GUI and performance testing.

VII. CONCLUSION

End-to-end testing is crucial for ensuring software quality,
especially in web applications. However, the lack of compre-
hensive datasets in this area has hindered progress in both
academic research and industry practices. To address this gap,
we released the E2EGit dataset, which includes 472 non-
trivial web repositories with 43,670 Web GUI tests, and 84
repositories featuring 271 performance tests. Among these, 13
repositories implemented both types of testing, with 786 Web
GUI tests with 90 performance tests [15].

We believe E2EGit serves as a valuable resource for re-
searchers and practitioners. It could support studies on the
evolution and maintenance of E2E tests, their fragility, the
relationship between code and test modifications, and patterns
in performance test workloads. Additionally, the dataset has
the potential to drive advances in test automation, such as
automatic test generation and repair, and to aid in the training
of machine learning models and domain-specific LLMs.

As part of our future agenda, we plan to expand and update
the dataset by including new repositories and supporting
additional frameworks and tools.



REFERENCES

[1] M. Leotta, B. Garcı́a, F. Ricca, and J. Whitehead, “Challenges of end-to-
end testing with selenium webdriver and how to face them: A survey,” in
2023 IEEE Conference on Software Testing, Verification and Validation
(ICST), 2023, pp. 339–350.

[2] A. Corazza, S. Di Martino, A. Peron, and L. L. L. Starace, “Web
application testing: Using tree kernels to detect near-duplicate states
in automated model inference,” in Proceedings of the 15th ACM-
IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM), 2021, pp. 1–6.

[3] S. Di Meglio and L. L. L. Starace, “Towards predicting fragility in end-
to-end web tests,” in Proceedings of the 28th International Conference
on Evaluation and Assessment in Software Engineering, ser. EASE ’24.
New York, NY, USA: Association for Computing Machinery, 2024, p.
387–392. [Online]. Available: https://doi.org/10.1145/3661167.3661179

[4] M. Leotta, D. Clerissi, F. Ricca, and P. Tonella, “Approaches and tools
for automated end-to-end web testing,” in Advances in Computers.
Elsevier, 2016, vol. 101, pp. 193–237.

[5] D. A. Menascé, “Load testing of web sites,” IEEE internet computing,
vol. 6, no. 4, pp. 70–74, 2002.

[6] A. van Hoorn, M. Rohr, and W. Hasselbring, “Generating probabilistic
and intensity-varying workload for web-based software systems,” in
Performance Evaluation: Metrics, Models and Benchmarks, S. Kounev,
I. Gorton, and K. Sachs, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008, pp. 124–143.

[7] Z. M. Jiang and A. E. Hassan, “A survey on load testing of large-scale
software systems,” IEEE Transactions on Software Engineering, vol. 41,
no. 11, pp. 1091–1118, 2015.

[8] B. Garcı́a, M. Gallego, F. Gortázar, and M. Munoz-Organero, “A survey
of the selenium ecosystem,” Electronics, vol. 9, no. 7, p. 1067, 2020.

[9] B. Garcı́a, J. M. del Alamo, M. Leotta, and F. Ricca, “Exploring browser
automation: A comparative study of selenium, cypress, puppeteer, and
playwright,” in International Conference on the Quality of Information
and Communications Technology. Springer, 2024, pp. 142–149.

[10] S. D. Meglio and L. L. L. Starace, “Evaluating performance and resource
consumption of rest frameworks and execution environments: Insights
and guidelines for developers and companies,” IEEE Access, pp. 1–1,
2024.

[11] S. Di Meglio, L. L. L. Starace, and S. Di Martino, “Starting a new rest
api project? a performance benchmark of frameworks and execution
environments.” in IWSM-Mensura, 2023.

[12] S. Balsam and D. Mishra, “Web application testing—challenges
and opportunities,” Journal of Systems and Software, vol. 219,
p. 112186, 2025. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0164121224002309

[13] M. Yenugula, R. Kodam, and D. He, “Performance and load testing:
Tools and challenges,” International Journal of Engineering in Computer
Science, vol. 1, pp. 57–62, 2019.

[14] E. Battista, S. D. Martino, S. Di Meglio, F. Scippacercola, and L. L.
Lucio Starace, “E2e-loader: A framework to support performance testing
of web applications,” in 2023 IEEE Conference on Software Testing,
Verification and Validation (ICST), 2023, pp. 351–361.

[15] “E2EGit: A Dataset of End-to-End Tests in Web Open Source Projects
— zenodo.org,” https://zenodo.org/records/14221860, [Accessed 26-11-
2024].

[16] S. Shrivastava and S. Prapulla, “Comprehensive review of load testing
tools,” International Research Journal of Engineering and Technology,
vol. 7, no. 3392-3395, p. 43, 2020.

[17] O. Dabic, E. Aghajani, and G. Bavota, “Sampling projects in github
for msr studies,” in 2021 IEEE/ACM 18th International Conference on
Mining Software Repositories (MSR). IEEE, 2021, pp. 560–564.

[18] M. M. N. Fuad and K. Sakib, “Webev: A dataset on the behavior of
testers for web application end to end testing,” in 2023 IEEE/ACM 31st
International Conference on Program Comprehension (ICPC), 2023, pp.
79–83.

[19] M. Biagiola, A. Stocco, F. Ricca, and P. Tonella, “Diversity-based web
test generation,” in Proceedings of the 2019 27th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2019, pp. 142–153.

[20] J. Tsay, L. Dabbish, and J. Herbsleb, “Influence of social and technical
factors for evaluating contribution in github,” in Proceedings of the 36th
international conference on Software engineering, 2014, pp. 356–366.

[21] M. Repository, “Java Web Frameworks,” https://mvnrepository.com/
open-source/web-frameworks, [Accessed 19-09-2024].

[22] RapidAPI, “State of APIs 2022: Rapid developer survey results,” https:
//stateofapis.com/, 2023, online; accessed 2023-06-23.

[23] “Popular Test Automation Frameworks: How to Choose —
BrowserStack — browserstack.com,” https://www.browserstack.
com/guide/best-test-automation-frameworks, [Accessed 03-12-2024].

[24] “State of JavaScript 2023: Testing — 2023.stateofjs.com,” https://2023.
stateofjs.com/en-US/libraries/testing/, [Accessed 19-09-2024].

[25] A. Deursen, L. M. Moonen, A. Bergh, and G. Kok, “Refactoring test
code,” CWI (Centre for Mathematics and Computer Science), NLD,
Tech. Rep., 2001.

[26] M. Leotta, H. Z. Yousaf, F. Ricca, and B. Garcia, “Ai-generated test
scripts for web e2e testing with chatgpt and copilot: A preliminary
study,” in Proceedings of the 28th International Conference on
Evaluation and Assessment in Software Engineering, ser. EASE ’24.
New York, NY, USA: Association for Computing Machinery, 2024, p.
339–344. [Online]. Available: https://doi.org/10.1145/3661167.3661192

[27] M. Curiel and A. Pont, “Workload generators for web-based systems:
Characteristics, current status, and challenges,” IEEE Communications
Surveys & Tutorials, vol. 20, no. 2, pp. 1526–1546, 2018.

[28] L. Christophe, R. Stevens, C. De Roover, and W. De Meuter, “Prevalence
and maintenance of automated functional tests for web applications,”
in 2014 IEEE International Conference on Software Maintenance and
Evolution. IEEE, 2014, pp. 141–150.

[29] F. Gortázar, M. Maes-Bermejo, M. Gallego, and J. Contreras Padilla,
“Looking for the needle in the haystack: End-to-end tests in open source
projects,” in Quality of Information and Communications Technology,
A. C. R. Paiva, A. R. Cavalli, P. Ventura Martins, and R. Pérez-Castillo,
Eds. Cham: Springer International Publishing, 2021, pp. 40–48.

[30] Ó. Soto-Sánchez, M. Maes-Bermejo, M. Gallego, and F. Gortázar, “A
dataset of regressions in web applications detected by end-to-end tests,”
Software Quality Journal, pp. 1–30, 2022.

[31] M. M. N. Fuad and K. Sakib, “Webev: A dataset on the behavior of
testers for web application end to end testing,” in 2023 IEEE/ACM 31st
International Conference on Program Comprehension (ICPC). IEEE,
2023, pp. 79–83.

https://doi.org/10.1145/3661167.3661179
https://www.sciencedirect.com/science/article/pii/S0164121224002309
https://www.sciencedirect.com/science/article/pii/S0164121224002309
https://zenodo.org/records/14221860
https://mvnrepository.com/open-source/web-frameworks
https://mvnrepository.com/open-source/web-frameworks
https://stateofapis.com/
https://stateofapis.com/
https://www.browserstack.com/guide/best-test-automation-frameworks
https://www.browserstack.com/guide/best-test-automation-frameworks
https://2023.stateofjs.com/en-US/libraries/testing/
https://2023.stateofjs.com/en-US/libraries/testing/
https://doi.org/10.1145/3661167.3661192

	Introduction
	Research Method
	Data Collection
	Web GUI Test Search
	Performance Test Search

	E2EGit Dataset
	Possible Uses of the E2EGit Dataset
	Threats to validity
	Related Work
	Conclusion
	References

