
Empirical Software Engineering manuscript No.
(will be inserted by the editor)

Test Code Refactoring Unveiled: Where and How
Does It Affect Test Code Quality and Effectiveness?

Luana Martins · Valeria Pontillo ·
Heitor Costa · Filomena Ferrucci ·
Fabio Palomba · Ivan Machado

Received: date / Accepted: date

Abstract Refactoring has been widely investigated in the past in relation
to production code quality, yet little is known about how developers apply
refactoring to test code. Specifically, there is still a lack of investigation into
how developers typically refactor test code and its effects on test code quality
and effectiveness. This paper presents an exploratory empirical study aimed
to bridge this gap of knowledge by investigating (1) whether test refactor-
ing actually targets test classes affected by quality and effectiveness concerns
and (2) the extent to which refactoring contributes to the improvement of
test code quality and effectiveness. First, we performed an exploratory min-
ing software repository to collect test refactoring data of open-source Java
projects from GitHub. Then, we statistically analyzed them in combination
with quality metrics, test smells, and code/mutation coverage indicators. Fur-
thermore, we measured how refactoring operations impact the quality and ef-

Luana Martins
Federal University of Bahia, Salvador, Brazil
E-mail: martins.luana@ufba.br

Valeria Pontillo
Software Languages (Soft) Lab — Vrije Universiteit Brussel, Brussels, Belgium
E-mail: valeria.pontillo@vub.be

Heitor Costa
Federal University of Lavras, Lavras, Brazil
E-mail: heitor@ufla.br

Filomena Ferrucci
Software Engineering (SeSa) Lab — University of Salerno, Fisciano, Italy
E-mail: fferrucci@unisa.it

Fabio Palomba
Software Engineering (SeSa) Lab — University of Salerno, Fisciano, Italy
E-mail: fpalomba@unisa.it

Ivan Machado
Federal University of Bahia, Salvador, Brazil
E-mail: ivan.machado@ufba.br

2 Luana Martins et al.

fectiveness of test code. Our findings indicate that test refactorings primarily
address low-quality test code, as evidenced by test smells and quality metrics.
At the same time, we did not find a statistically significant relationship be-
tween test refactorings and code/mutation coverage metrics. In addition, test
refactorings enhance the coupling, cohesion, and size of the test code, albeit
sometimes leading to an increase in certain test smells. We conclude our study
by emphasizing the significance of incorporating both quality metrics and test
smells into refactoring decisions to enhance the overall quality of test code.

Keywords Software Testing · Test Code Quality · Test Refactoring ·
Empirical Software Engineering.

1 Introduction

Refactoring is an engineered approach that allows developers to improve source
code quality without affecting its external behavior [18]. Over the last decades,
researchers have been proposing automated refactoring recommenders [7] and
investigated how refactoring relates to code quality [4,53,16,10]. In particular,
researchers identified both benefits and drawbacks of its application [1,5,27],
finding that, while refactoring is theoretically associated with modifications
that do not affect the external behavior of source code, it may induce defects
[15,6,17], vulnerabilities [22], or even code smells [59]. These drawbacks are
mainly due to refactoring activities performed manually without the support
of automated tools and interleaved with other code changes [37]. Our research
is motivated by these previous works. On the one hand, most previous studies
focused on the refactoring of production code and, for this reason, we argue
that there is a lack of investigations into how refactoring is applied to test
code. On the other hand, it remains unclear whether similar effects observed
in previous studies may emerge with test refactoring, particularly regarding
its potential impact on both test quality and effectiveness. For instance, when
refactoring actions target the logic of a test case, there may be repercussions
on both aspects. Hence, we point out a limited knowledge on the effects of
refactoring on both test quality and effectiveness.

An improved understanding of test refactoring would have a number of
potential benefits for research and practice. In the first place, test cases rep-
resent a crucial asset for software dependability: developer’s productivity is
partly dependent on the quality of test cases [36], as these help practitioners
to decide on whether to merge pull requests or deploy the system [20]. As such,
analyzing how refactoring affects test cases may have a significant impact on
practice. Secondly, researchers have been showing that the design of test code
is approached in a substantially different way with respect to traditional devel-
opment [34]. Indeed, the test code must often interact with external systems,
databases, or APIs to set up test environments and verify the system’s behav-
ior [35]. As a consequence, test code may suffer from different issues that, in
turn, would require different refactoring operations [21].

Test Code Refactoring Unveiled 3

For these reasons, new refactoring practices have been proposed with the
aim of dealing with quality or effectiveness concerns [13,35,21]. While those
refactoring practices were the target of some previous investigations, researchers
limited their focus to how refactoring may influence test smells, i.e., symp-
toms of poor test code quality [51,52,46], hence not providing comprehensive
analysis into the nature and effects of test refactoring. More specifically, we
highlight a lack of knowledge on (1) whether developers apply test refactoring
operations on test classes that are actually affected by quality or effectiveness
concerns, as it is supposed to be based on the definition of refactoring; and (2)
what is the effect of refactoring on both quality and effectiveness of test cases.

This paper aims to address this gap of knowledge by conducting an ex-
ploratory empirical study.1 We first collect test refactoring data from the
change history of open-source Java projects from GitHub and combine them
with data coming from automated instruments able to profile test code from
the perspective of quality metrics, test smells, and code/mutation coverage
information. Afterward, we apply statistical analyses to address three main
research goals targeting (1) whether test classes with a low level of quality, in
terms of test smells and code metrics, are associated with more test refactor-
ing, (2) whether a low level of effectiveness, in terms of mutation coverage and
code coverage, is associated with more test refactoring, and (3) to what extent
the removal of test smells improve the test code quality and effectiveness. As
such, the scientific novelty of our article lies in two key aspects. In the first
place, our research focuses specifically on test refactoring operations, which is,
to the best of our knowledge, still unexplored. Even if test refactoring shares
underlying principles with traditional refactoring, the different nature of test
code requires distinct refactoring approaches and may lead to different out-
comes compared to production code. Second, we broaden our analysis by not
only examining the correlation between test refactoring and test code qual-
ity attributes, but also investigating its impact on key test code effectiveness
indicators, such as branch and mutation coverage. This deeper exploration
enhances the current understanding of the factors that influence these critical
metrics, thereby expanding the body of knowledge in this domain.

Our main findings show that test refactorings target low-quality test code
regarding test smells and quality metrics. Still, there is no strong indication
that coverage and mutation scores drive the refactorings under investigation.
In addition, refactorings from Fowler’s catalog, e.g., Extract Class, improve
the coupling, cohesion, and size of the test code. In contrast, test-specific
refactoring may lead to an increase in the number of test smells.

Our findings might benefit researchers and practitioners from multiple per-
spectives. In the first place, our research may reveal insights into the refac-

1 This manuscript represents the complete version of our previous registered report [32].
Compared to our initial plan, we reduced the sample size from 175 to 100 projects due to
challenges encountered during the execution of our tooling. Specifically, the need to compile
historical snapshots for computing independent variables introduced various technical limi-
tations, such as compilation issues and dependency resolution problems, which limited the
number of projects we were able to analyze, as discussed in detail in Section 4.

4 Luana Martins et al.

toring types that may deteriorate test code quality and effectiveness. Such
information would be relevant for researchers in both the fields of refactoring
and testing, as it may lead them to (1) extend the knowledge on the best and
bad practices to properly apply test refactoring; (2) devise novel test refac-
toring approaches which are aware of the possible side effects of refactoring,
e.g., we may envision multi-objective search-based refactoring approaches that
may optimize refactoring recommendations based on both quality and effec-
tiveness attributes; and (3) design novel recommendation systems that may
support developers in understanding how a refactoring would impact different
test code properties. The results would also be useful to practitioners, who
may have additional proof of the side effects of refactoring, hence possibly
being stimulated further on the need to employ automated refactoring tools.
In the second place, our findings may indicate the nature of the test cases
more likely to be subject to refactoring operations. Researchers might use this
information to define refactoring recommenders and refactoring prioritization
approaches, while practitioners may acquire awareness of their actions.

Structure of the paper. Section 2 overviews the most closely related work,
positioning our work within the current body of knowledge. Section 3 elabo-
rated on the research questions of the study, while Section 4 reports on the
research methods employed to address them. In Section 5, we analyze the re-
sults achieved from our analyses. Section 6 further discusses the main findings
of our work, emphasizing the implications for research and practice. The po-
tential limitations of our study are discussed in Section 7. Finally, Section 8
concludes the paper and outlines our future research agenda.

2 Related Work

The current literature can be distinguished based on the type of empirical
studies conducted. First, several studies analyzed change history information
to extract knowledge about test smells and their impact. Spadini et al. [54]
investigated ten open-source projects to find a relation between six test smells
and the change and defect-proneness of both test and production code, finding
that smelly JUnit tests are more change-prone and defect-prone than non-
smelly ones. In addition, they found that production code is typically more
defect-prone when tested by smelly tests. As such, the authors did not target
test code refactoring, hence not assessing how the seemingly test code quality
improvement actions performed by developers affect test code quality and
effectiveness, i.e., the authors looked exactly in the opposite direction of our
paper, focusing on how bad practices affect test code quality.

Wu et al. [64] explored the impact of eliminating test smells on the pro-
duction code quality of ten open-source projects. In this respect, there are two
key points that make our investigation novel: first, test smell removal does not
imply the application of refactoring. A previous empirical study [23] indeed
showed that 83% of test smell removal activities are due to feature mainte-
nance actions. Hence, our work can therefore further the knowledge of how

Test Code Refactoring Unveiled 5

developers apply test code refactoring. Second, the authors focused on the ef-
fects of test smells on code quality rather than analyzing the impact of test
code refactoring actions. As such, our work extends the current knowledge by
assessing how test refactoring is applied and the impact on multiple aspects
of test code, such as quality and effectiveness.

Peruma et al. [46] investigated the relationship between refactoring changes
and their effect on test smells. The authors used Refactoring Miner [57] to
detect refactoring operations and the tsDetect tool [45] to identify the test
smells from unit test files of 250 open-source Android Apps. Results showed
that refactoring operations in test and non-test files differ, and the refactorings
co-occur with test smells. With respect to the work by Peruma et al. [45], we
do not limit ourselves to the analysis of test smells, but also consider additional
indicators of test code quality and effectiveness: in this sense, ours represent a
more comprehensive analysis of the role of test refactoring. Second, we assess
the actual effects of test refactoring on test code quality and effectiveness,
providing insights into how various test refactoring types may support the
evolutionary activities of developers.

A second line of research is represented by qualitative studies targeting the
developer’s perception of test refactoring. Damasceno et al. [12] investigated
the impact of test smell refactoring on internal quality attributes, reporting
some insights that may potentially be in line with the results of our study,
e.g., they let emerge the impact of test smell refactoring on internal qual-
ity attributes. In the first place, the authors focused on the refactoring of
test smells, while our work targets test code refactoring from a more gen-
eral perspective, attempting to assess the extent to which this is applied to
classes, suggesting the presence of quality or effectiveness concerns. Secondly,
our results may provide evidence-based, complementary insights with respect
to what the authors found out in their qualitative study. Third, our work has
a broader scope, and it also targets the effectiveness side of the problem.

Soares et al. [51] investigated how developers refactor test code to remove
test smells. The authors surveyed 73 open-source developers and submitted 50
pull requests to assess developers’ preferences and motivation while refactoring
the test code. The results showed that developers preferred the refactored test
code for most test smells. In another work, Soares et al. [52] investigated
whether the JUnit 5 features help refactor test code to remove test smells.
They conducted a mixed-method study to analyze the usage of the testing
framework features in 485 popular Java open-source projects, identifying the
features helpful for test smell removal and proposing novel refactorings to fix
test smells. Also in this case, the authors focused on the refactoring of test
smells, while our study has a broader scope. In addition, while we did not
conduct surveys or interviews—this is part of our future research agenda—
we extended the current body of knowledge by assessing whether test code
quality and effectiveness indicators may trigger refactoring activities, other
than providing a comprehensive overview of how test refactoring relates to
branch and mutation coverage, which is a premiere of our study.

6 Luana Martins et al.

3 Research Questions and Objectives

The goal of the empirical study was to analyze the test refactoring operations
performed by developers over the history of software projects, with the purpose
of understanding (1) whether low-quality test classes, in terms of structural
metrics and test smells, provide indications on which test classes are more
likely of being refactored, (2) whether test classes with low effectiveness, in
terms of code coverage and mutation coverage, provide indications on which
test classes are more likely of being refactored, and (3) as a consequence, to
what extent test refactoring operations are effective in improving quality and
effectiveness of test classes. In other terms, we were first interested in assessing
the quantity of test refactoring operations performed on classes exhibiting
test code quality and effectiveness issues. Then, we assessed the quality of
the test refactoring operations applied in terms of improvements provided to
test code quality and effectiveness. The perspective is of both researchers and
practitioners who are interested in understanding the relationship and effects
of test refactoring operations on the quality and effectiveness of test classes.

More specifically, our empirical investigation aims to address first the fol-
lowing research questions (RQs):

RQ1. Are test refactoring operations performed on test classes having a low
level of quality, as indicated by quality metrics and test smell detectors?

RQ2. Are test refactoring operations performed on test classes having a low
level of effectiveness, as indicated by code and mutation coverage?

Through RQ1 and RQ2, we aim to address the first objective of the study,
hence understanding whether the low quality and effectiveness of test classes
are associated with more test refactoring operations. The results of these two
research questions might have multiple implications for software maintenance,
evolution, and testing researchers. An improved understanding of these aspects
may inform researchers on the characteristics of test suites that trigger more
refactoring operations, possibly providing insights on (1) the factors associated
with test refactoring and (2) the design of novel or improved instruments to
better support developers. For instance, should we discover that test refactor-
ing is not frequently applied on test classes exhibiting test smells, this would
suggest the need for further research into the motivation leading developers to
refactor test code. Moreover, it would also point to the need for better design
of test smell detectors to facilitate refactoring efforts.

Upon completion of this investigation, we further elaborated on the impact
of test refactoring, addressing the following research questions:

RQ3. What is the effect of test refactoring on test code quality, as indicated
by quality metrics and test smell detectors?

RQ4. What is the effect of test refactoring on test code effectiveness, as
indicated by code and mutation coverage?

Test Code Refactoring Unveiled 7

Through RQ3 and RQ4, we aim to extend the current knowledge on the
impact of test refactoring, assessing whether the test code quality and effec-
tiveness increase, decrease, or remain the same after the application of test
refactoring operations. It is worth mentioning that addressing these two re-
search questions would be important independently from the results obtained
by RQ1 and RQ2. Indeed, regardless of the amount of refactoring opera-
tions performed on test classes exhibiting quality or effectiveness concerns,
it would still be possible that the specific refactoring actions targeting those
classes have an impact. To make our argumentation more practical, consider
the case of the Extract Method refactoring, whose suboptimal implementation
may potentially affect test code effectiveness. Given a verbose test method
with several steps and assertions, the refactoring enables the extraction of
multiple test methods, which are supposed to be more cohesive and focused
on the verification of specific conditions of production methods. However, if
the extraction is not performed properly, it could alter the logic of the test
and negatively impact test effectiveness. For instance, consider test T, which
verifies two branches, B1 and B2, of the production method M. In this case,
an Extract Method operation is supposed to split T so that the resulting tests
T1 and T2 target B1 and B2 individually. However, should there be a logical
relation between B1 and B2, T2 will still need to pass through T1 to ensure
that the logical relation is still met. A suboptimal refactoring may overlook
this requirement, possibly not embedding in T2 the statements required to
reach B1. As a result, this operation would affect the overall level of coverage
of the production code.

As such, RQ3 and RQ4 provide an orthogonal view on the matter. Also
in this case, the outcome of our investigation may lead to implications for
research and practice. First, our findings may help researchers measure the
actual, practical impact of test refactoring—this may drive considerations on
how future research efforts should be prioritized, e.g., by favoring more re-
search on impacting refactoring operations. Second, our results may increase
the practitioner’s awareness of test refactoring, possibly increasing its appli-
cation in practice.

To design and report our empirical study, we will follow the empirical soft-
ware engineering guidelines by Wohlin et al. [63] as well as the ACM/SIGSOFT
Empirical Standards.2

4 Experimental Plan

This section reports the research method that we applied to address our RQs.
Figure 1 overviews the main steps conducted to execute our study.

2 Available at: https://github.com/acmsigsoft/EmpiricalStandards

8 Luana Martins et al.

[c75, c112] = V2.0

(a) Context of the study

Selection of projects
with SEART tool

Filter #1
Projects built with

Maven

Filter #2
Projects written with

Java 1.8

Filter #4
Removing projects

that are clones

5,126
projects

1,901
projects

269
projects

175
projects

Test smells
detection (Tsi)

[TsDetect]

Effectiveness metrics
calculation (Emi)

[VITRuM]

[c113, c128] = V2.1

Run script to get
commits and tags

(b) Data Collection

(c) Data Analysis

Run script to get
control metrics

RQ1:
significant difference of refk

for different values of Tsi/Qmi

Hn1Qmi--refk
Hn2Tsi--refk

RQ2:
significant difference of refk

for different values of Emi

Hn3Emi--refk

c75

RQ3:
significant difference of

Qmi/Tsi before and after ref
Hn4Qmi--refk
Hn5Tsi--refk

RQ4:
significant difference of
Emi before and after refk

Hn6Emi--refk

Filter #3
Projects by number of

lines and test files

187
projects

... ...
c111 c113 c114 c127

c128

V2.0 V2.1

c112

... ...
c111 c113 c114 c127

c128c112

c75

Dataset A
65 projects

Dataset B
12 projects

Quality metrics
calculation (QMi)

[VITRuM]

Control metrics
values

Test refactoring
detection (refk)

[TestRefactoringMiner]
List of commits

Test smells

Quality metrics

Effectiveness
metrics

Test refactorings

Fig. 1: Overview of the experimental design.

4.1 Context of the study

The context of our investigation was composed of (i) software systems, i.e.,
the projects that have been mined to collect the data required to address our
research objectives, and (ii) empirical study variables, i.e., the independent
and dependent variables that we statistically analyzed.

Software Systems. The selection of suitable software systems was driven
by various considerations. First, we focused on open-source projects, as we
needed access to information on change history. Second, we relied on popular,
large real-world projects with enough releases to collect data that could be
analyzed statistically. Third, we standardized the building process to ease de-
pendency management and streamline build configurations across all projects.
As such, we used SEART tool3 to select open-source, non-fork projects from
GitHub that had at least 100 stars, 10 major releases, 1,000 lines of code, and
10 test classes. We sought Java projects that can be compiled with Maven
and Java 8—Java 8 is the most popular version used at the time of writ-
ing.4 Figure 1 (a) shows the number of projects identified after applying each
selection criterion. We ultimately identified 175 potentially suitable projects,
which form the sample considered for the analysis.

The selected projects vary in terms of scope, size, and communities - more
details about the characteristics of the projects are reported in our online ap-
pendix [33]. In addition, we thoroughly reviewed the contribution guidelines

3 https://seart-ghs.si.usi.ch/
4 https://www.jetbrains.com/lp/devecosystem-2023/java/

Test Code Refactoring Unveiled 9

of the projects to assess whether any of them followed the so-called Boy Scout
rule, i.e., “Leave every piece of code you touch cleaner than how they found
it”.5 We control for this factor since projects following this principle might
be more inclined to the application of refactoring. Therefore, they could have
higher test code quality and effectiveness, possibly diverging from standard
behaviors. We did not find explicit references to this principle in any of the
selected projects. Yet, this practice may still be embedded in their develop-
ment processes because of developers’ commitment to clean code practices,
even if not formally documented in the guidelines. For example, within the
Adobe-Consulting-Services/acs-aem-commons project, one contributor
explicitly adheres to this principle, as evidenced by pull requests.6 We ex-
tended such an investigation by inquiring the core maintainers of the projects
considered, asking whether they consistently apply this rule or are aware of
contributors applying it. Unfortunately, we did not receive any feedback from
these maintainers, yet our manual investigation suggests that the practice is
not significantly widespread and this factor may not bias our analysis.

Moreover, we characterized the projects based on the automated static
analysis tools used in their quality assurance processes. Developers might be
inclined to follow the feedback from these tools, possibly making them more
prone to refactor test code. Although 37 projects reference SonarQube, Check-
style, or PMD in their configuration files, only 12 projects explicitly ask con-
tributors to fix the warnings raised by these tools before committing new code.
However, these projects were excluded from the study due to compilation is-
sues encountered during data collection. In conclusion, we provide two obser-
vations. First, the explicit fixing of warnings raised by static analysis tools
is not systematically requested by the core contributors of the open-source
projects in our sample, though some developers may be more committed to
clean code practices. Second, none of the static analysis tools target the test
code quality concerns considered in our study nor suggest the refactoring op-
erations we investigated. Thus, it is unlikely that the use of these tools has
biased our findings.

Empirical Study Variables. In the context of RQ1 and RQ2, we were
interested in assessing whether refactoring operations were more likely to be
observed on test classes exhibiting test code quality and effectiveness concerns.
As such, we defined the following empirical study variables:

Independent Variables. These are the factors that are related to the applica-
tion of test refactoring, namely (i) test code quality metrics; (ii) presence
of test smells (of different types); (iii) branch coverage; and (iv) mutation
coverage. Tables 1 and 2 list and describe the independent variables of the
study. These metrics were all computed across releases of different software
systems and were statistically analyzed, as described later. The selection of

5 The Boy Scout Rule: https://www.oreilly.com/library/view/97-things-every/978
0596809515/ch08.html.

6 Available at: https://github.com/Adobe-Consulting-Services/acs-aem-commons/p
ull/1908

10 Luana Martins et al.

Table 1: Description of quality metrics as detected by VITRuM. The descrip-
tion includes an interpretation of the metrics, along with reference mean values
identified in the referred previous studies. These values were derived by these
previous studies from analyses of metric distributions in high-quality projects,
providing average benchmarks that can be considered acceptable standards
for the interpretation of our results.

Quality Met-
rics

Description

Number of Lines
(LOC)

Counts the number of lines of code. The higher the metric values,
the higher the size of the class. Oliveira et al. [40] suggested that
classes having a LOC ≥ 222 are more prone to be defective.

Number of Meth-
ods (NOM)

Counts the number of methods. High metric values indicate that
the classes have more responsibilities. Oliveira et al. [40] suggested
that classes having a NOM ≥ 16 are harder to maintain.

Weight Method
Class (WMC)

Counts the number of branch instructions in a class. The higher
the metric values, the more complex the class. Shatnawi et al. [49]
suggested that classes having a WMC ≥ 32 are more fault-prone.

Response for a
Class (RFC)

Counts the number of method invocations in a class. High met-
ric values indicate that a class interacts with many other classes,
leading to increased complexity. Shatnawi et al. [49] suggested
that classes having a RFC ≥ 49 are more fault-prone.

Assertion density
(AsD)

Calculates the percentage of asserts with respect to the total num-
ber of statements in a class. A greater number of assertions sug-
gests a more thorough testing regime. Kudrjavets et al. [25] sug-
gested that 34 assertions per KLOC, i.e., AsD ≤ 3.4%, indicate
that tests cover a reasonable amount of behaviors without being
overly specific.

Mutation Cover-
age (MT)

Calculates the percentage of mutated statements in the produc-
tion class covered by the test. A higher MT indicates better test
coverage. Schweikl et al. [48] observed that many projects have a
coverage of around MT ≥ 34%.

Line coverage
(LC)

Calculates the percentage of lines exercised by the test. A higher
LC indicates better test coverage. Schweikl et al. [48] observed
that many projects have LC ≥ 62%.

Branch coverage
(BC)

Calculates the percentage of branches exercised by the test.
Schweikl et al. [48] observed that many projects have a coverage
of around BC ≥ 56%.

Note: The reported values should be considered as guidelines for interpreting our findings
rather than universally established standards, as the ideal range for these metrics can vary
depending on the project context, language, and domain.

these independent variables was driven by multiple considerations. First, we
consider test code quality metrics and test smells that were targeted by pre-
vious research in the field [9,44] and found to impact test code in different
manners [55,23]. Second, branch and mutation coverage are widely consid-
ered two key indicators of test code effectiveness, which may estimate the
goodness of test cases in dealing with real defects [24,42].

Dependent Variables. These are the refactoring operations (of different types)
being observed across releases of different software systems. To select suitable
test refactoring operations for our purpose, we investigated the literature

Test Code Refactoring Unveiled 11

discussed in Section 2 to extract the test refactoring operations previously
associated with our independent variable. Table 3 lists the refactoring oper-
ations that have been targeted, along with a brief description.

Table 2: Description of test smells as detected by tsDetect.

Test Smell Description Precision Recall

Assertion
Roulette
(AR)

A test method contains assertion statements
without an explanation/message

94.7% 90.0%

Duplicate As-
sert (DA)

A test method that contains more than one
assertion statement with the same parameters

85.7% 90.0%

Handling
Exception
(ECT)

A test method that contains throws statements 100.0% 100.0%

Eager Test
(ET)

A test method contains multiple calls to mul-
tiple production methods

100.0% 100.0%

General Fix-
ture (GF)

Fields within the setUp method are not uti-
lized by all test methods

95.2% 100.0%

Lazy Test
(LT)

Multiple test methods call the same class un-
der test methods

90.9% 100.0%

When it turned to RQ3 and RQ4, we were interested in assessing the
impact of test refactoring on the test code quality and effectiveness aspects
considered. As such, we needed to swap independent and dependent variables:
indeed, in this case, we were interested in observing how refactoring impacted
test code properties rather than the opposite:

Independent Variables. These are the different refactoring operations reported
in Table 3, computed across the releases of software systems considered.

Dependent Variables. These are the test code quality and effectiveness metrics
described in Tables 1 and 2, which have been computed across releases of
software systems.

In all RQs, we also included a set of control variables to analyze whether
project- and process-level characteristics may affect the dependent variables.

Control Variables. We took into account the frequency of releases and activi-
ties by the project. Such information may provide insights into the develop-
ment speed, which, in turn, may impact test code quality and effectiveness.
Given a release Ri, we computed the number of releases issued within the
last 1, 3, 6, and 12 months. In addition, for each class Cj within Ri, we com-
puted the number of commits performed by developers between the releases
Ri−1 and Ri. We also considered project-level metrics such as (1) project
size in terms of lines of code; (2) number of contributors; (3) number of
branches; and (4) number of pull requests. On the one hand, these metrics
can provide a good overview of the main characteristics of the project and

12 Luana Martins et al.

Table 3: Description of refactorings detected by TestRefactoringMiner.

Refactoring Description Precision Recall

Add Assert
Explanation

Add an optional parameter into the assert
methods to provide an explanatory message

100.0% 78.0%

Extract Class Create a new class and place the fields and
methods responsible for the relevant function-
ality in it

100.0% 100.0%

Extract
Method

Move a code fragment to a separate new
method and replace the old code with a call
to the method

99.9% 96.9%

Inline
Method

Replace calls to the method with the method’s
content and delete the method itself

100.0% 98.2%

Parameterize
Test

Remove duplicate code using the @parameter-
ized test annotation to define a variety of ar-
guments

100.0% 100.0%

Replace
@Test an-
notation w/
assertThrows

Remove @Test annotation and add of assert-
Throws method

100.0% 93.0%

Replace
@Rule an-
notation w/
assertThrows

Remove @Rule annotation and add of assert-
Throws method

100.0% 88.0%

Replace try/-
catch w/ as-
sertThrows

Remove try/catch blocks and add of assert-
Throws method

100.0% 89.0%

the community around it. On the other hand, all these metrics can impact
test code quality and effectiveness, e.g., a higher amount of branches may
indicate a higher level of activity around the project, which in turn can
influence the way test cases are maintained and evolved.

4.2 Data Collection

We used different automated tools available in the literature to extract data
on quality and effectiveness metrics, test smells, and refactoring operations.
Figure 1 (b) shows the data collection and integration to compose our datasets.

Collecting test code quality and effectiveness metrics. To collect
both test code quality and effectiveness metrics (Table 1), we ran VITRuM,
a plug-in for the computation and visualization of static and dynamic test-
related metrics [43].The tool uses libraries such as JaCoCo to calculate line
and branch coverage and pitest for the mutation coverage. It is important
to remark that those libraries require building the projects. Due to various
compilation issues, e.g., dependency resolution [29,58], VITRuM could not
analyze several projects, as further elaborated in the remainder of this sec-
tion. Similar challenges have been documented in prior research on mining
repositories for dynamic metrics. For instance, Tufano et al. [58] reported that

Test Code Refactoring Unveiled 13

only 38% of the change history could be successfully compiled when perform-
ing mining studies, demonstrating the hardness of analyzing the evolution of
software projects from the perspective of dynamic information.

Collecting test smells. Among the test smell detection tools available
for Java code [2], we used tsDetect [45], which is the most accurate tool,
with a precision score ranging from 85% to 100% and a recall score ranging
from 90% to 100%. tsDetect performs a test code static analysis through
an AST (Abstract Syntax Tree) to apply the test smells detection rules in the
test files. A test file in the JUnit testing framework should follow the naming
conventions of either pre-pending or appending the word ‘‘Test’’ to the
name of the production class under test and at the same package hierarchy
[45]. With the detection rules, the tool can detect (i) the presence or absence
of a test smell in a test class or (ii) the number of instances per test smell
in a test class. In addition, the tool receives a configuration of the severity
thresholds for each test smell [56]. We ran the tool to identify the number of
instances of the six test smells described in Table 2 with default values for the
severity thresholds (i.e., the tool reports all instances of test smells detected).

Collecting refactoring data. To detect test refactoring operations, we
used the TestRefactoringMiner tool [31]. The tool is built on top of the
state-of-the-art refactoring mining tool RefactoringMiner, which has the
highest precision (99.8%) and recall (97.6%) scores among the currently avail-
able refactoring mining tools [57]. The tool analyzes the added, deleted, and
changed files between two project versions to detect specific test refactorings,
reaching 100% and 92.5% of precision and recall scores. In order to retrieve
all the test refactorings performed in a release, we had to group the test refac-
torings returned by TestRefactoringMiner for the commits ranging from
releasen−1 to releasen. As a result, the tool operationalizes the detection of
all the refactoring operations considered in the study—Table 3 presents the
set of test refactoring investigated. It is worth noting that this set considers
various refactoring operations, such as integrating new technologies like JUnit
5 or improving the organization of test classes.

Data integration. We established traceability links between the test
classes reported by tsDetect, VITRuM, and TestRefactoringMiner
tools, finally integrating their outcome in a unique data source to be further
analyzed from a statistical standpoint. However, the tools did not compute the
metrics for the same test classes for three main reasons. First, VITRuM and
tsDetect calculate metrics for specific releases in the project’s history, while
TestRefactoringMiner groups refactored classes between consecutive re-
leases and reports test refactorings. Thus, the integration of the tools’ outputs
depends on the number of refactored classes detected by TestRefactoring-
Miner, while VITRuM and tsDetect track metrics for each class over time.
Second, VITRuM could not calculate test coverage and mutation scores for
some projects due to issues such as dependency resolution [29,58]. Third, the
tools occasionally failed due to exceeding available memory on the machine
or internal issues. Consequently, some test classes have refactorings but do

14 Luana Martins et al.

not match the quality metrics, coverage, or mutation scores. As a consequence
of these observations, we had to adjust our dataset construction strategy by
considering two sets of projects. Dataset A contains static metrics extracted
from 65 projects, i.e., quality metrics, test smells, and refactoring operations.
Dataset B contains static and dynamic metrics extracted from 12 projects,
i.e., quality metrics, test smells, effectiveness metrics, and refactoring opera-
tions. Please note that the 12 projects contained in Dataset B are also included
in Dataset A. This refinement allowed the data analysis while acknowledging
the limitations encountered in achieving our initial goal of analyzing a larger
amount of systems [32]. Figure 2 shows the characterization of both datasets.

1

10

100

1000

10000

Forks Stars Branches Tags Commits Classes Tests KLOC
Metric

V
al

ue
 (

lo
g

sc
al

e)

Dataset A B

Fig. 2: Characterization of datasets (boxplots in log scale)

4.3 Data Analysis

We first formulate the working hypotheses that we statistically assessed. As for
RQ1, given a quality metric Qmi in the set of test code quality metrics con-
sidered in the study and a refactoring refk in the set of refactoring operations
considered in the study, our null hypothesis was the following:

Hn1Qmi−refk . There is no significant difference in terms of the amount of
refk operations performed on test classes having different values of Qmi.

As in RQ1, we also evaluated the relation between test refactoring and
test smells. Given a test smell Tsi in the set of test smells considered in the
study and refk, we defined a second null hypothesis:

Hn2Tsi−refk . There is no significant difference in terms of the amount of refk
operations performed on test classes affected and not by Tsi.

Test Code Refactoring Unveiled 15

As for RQ2, given an effectiveness metric Emi in the set of effectiveness
metrics considered in our study and refk, the null hypothesis was the following:

Hn3Emi−refk . There is no significant difference in terms of the amount of
refk operations performed on test classes having different values of Emi.

As for RQ3, given a quality metric Qmi, a test smell Tsi, and a refactoring
refk, the null hypotheses was:

Hn4Qmi−refk . There is no significant difference in terms of Qmi before and
after the application of refk.

Hn5Tsi−refk . There is no significant difference in the number of Tsi instances
before and after the application of refk.

Finally, as for RQ4, the null hypothesis was:

Hn6Emi−refk . There is no significant difference in terms of Emi before and
after the application of refk.

If one of the null hypotheses is statistically rejected, we will accept the
corresponding alternative hypotheses, which are implicitly understood to be
the opposite of the null hypotheses previously described. Then, we verified the
working hypotheses by building statistical models.

Statistical modeling for RQ1 and RQ2. To address our first two re-
search questions, we devised a Logistic Regression Model for each refactor-
ing operation considered in the study. Such a model belongs to the class of
Generalized Linear Models (GLM) [39] and relates a (dichotomous) depen-
dent variable—in our case, whether or not a particular type of refactoring is
performed—with either continuous and discrete independent variables—the
quality and effectiveness metrics considered in RQ1 and RQ2.

Before building the statistical model, we assessed the presence of multi-
collinearity [41], which arises when two or more independent variables are
highly correlated and can be predicted one from the other. We used the vif

(Variance Inflation Factors) function and discard highly correlated variables,
putting a threshold value equal to 5 [41].

For each statistical model, we assess whether each independent variable is
significantly correlated with the dependent variable (using a significance level
of α = 5%. Then, we quantify this correlation using the Odds Ratio (OR) [8],
which is a measure of the strength of the association between each independent
variable and the dependent variable. Higher OR values for an independent
variable indicate a greater probability of explaining the dependent variable,
i.e., a higher likelihood that a refactoring operation has been triggered by
that variable. However, the interpretation of OR values varies based on the
measurement scales of the independent variables: ratio scales are used for test
code quality and effectiveness metrics, while categorical scales are used for
test smells. For the metrics, the OR represents the likelihood that a test class
will undergo refactoring for each one-unit increase in that variable. For test

16 Luana Martins et al.

smells, the OR reflects the likelihood that a smelly test class is to be involved
in refactoring operations compared to a class that is not affected.

The statistical significance of the correlation between independent, i.e.,
test code quality metrics, effectiveness metrics, and test smells, and depen-
dent variables allows us to accept or reject Hn1Qmi−refk , Hn2Tsi−refk , and
Hn3Emi−refk , while OR values measure the strengths of the correlations.

Statistical modeling for RQ3 and RQ4. To statistically assess the
impact of test refactoring operations on test code quality and effectiveness
metrics and smells, we collected all the test classes subject to the refactoring
type refk in a generic release Ri. Afterward, for each of those test classes, we
computed the value of test code quality and effectiveness metrics and smells
computed on the release Ri and the value of the metrics and smells computed
on the release Ri−1.

We produced two distributions: the first representing the metric values
(or the number of test smells) in Ri−1, i.e., before the application of refk; the
second representing the metric values (or the number of test smells) in Ri, i.e.,
after the application of refk. On this basis, we employed the non-parametric
Mann–Whitney U Test [30] (with α-value = 0.05), through which we accept
or reject the null hypotheses Hn4Qmi−refk , Hn5Tsi−refk , and Hn6Emi−refk .

In addition, we also relied on the Vargha-Delaney (Â12) [60] statistical
test to measure the magnitude of the differences observed in the considered
distributions. According to the direction and value given by Â12, we have a
practical interpretation of our findings, which depend on the test code factor
considered. Specifically, if the Â12 values are lower than 0.5, this implies that:

– The metric values computed on the release Ri−1 are lower than those on Ri,
i.e., the refactoring refk would have a negative effect on the quality metrics
(Qmi). Lower metric values in Ri−1 would indicate that the refactoring
induced the increase of these metrics in Ri, hence having a negative effect.

– The metric values computed on the release Ri−1 are lower than those on
Ri, i.e., the refactoring refk would have a positive effect on the effectiveness
metrics (Emi). Lower metric values in Ri−1 would indicate that the refac-
toring induced the increase of these metric in Ri, hence having a positive
effect.

– The number of test smells (Tsi) computed on the release Ri−1 is lower than
the one computed on Ri, i.e., the refactoring refk would have a negative
effect, hence suggesting that, rather than improving test code design, the
refactoring induced the emergence of some form of test smells.

Similarly, a Â12 > 0.50 indicates the opposite, hence that either refk has a
negative impact on the considered test code quality or effectiveness metric, or
that the refactoring has a positive impact of the removal of test smells. Finally,
Â12 == 0.50 points out that the results are identical, i.e., the refactoring has
limited or no effect on the dependent variables.

Test Code Refactoring Unveiled 17

0.00

0.25

0.50

0.75

1.00

AR DA ECT ET GF LT LOC NOM WMC RFC AsD
Metric

V
al

ue

Set Not refactored Refactored

(a) Dataset A with static metrics of 65 projects

0.00

0.25

0.50

0.75

1.00

AR ECT ET LT GF DA LOC NOM WMC RFC AsD LC BC MC
Metric

V
al

ue

Set Not Refactored Refactored

(b) Dataset B with static and dynamic metrics of 12 projects

Fig. 3: Boxplots for the distributions of metrics and test smells in the datasets

5 Analysis of the Results

Figure 3 depicts the boxplots of the distributions of test smells, quality metrics,
and effectiveness metrics for the sets of refactored and non-refactored tests in
our datasets. Dataset A, used to investigate RQ1 and RQ3, contains 1,018
refactored test classes with 1,130 refactorings. Dataset B (for RQ2 and RQ4)
has 18 refactored test classes and 20 refactorings.

18 Luana Martins et al.

5.1 Are test refactorings performed in classes with low quality? (RQ1)

Table 4 reports the results of the Logistic Regression Model for each refactoring
operation refk analyzed in our study. As dependent variable, we considered
the Qmi quality metric in {Lines of Code (LOC), Number of Methods (NOM),
Weight Method Class (WMC), Response for a Class (RFC), Assertion Den-
sity (AsD)}, the Tsi test smell in {Assertion Roulette (AR), Duplicate Assert
(DA), Handling Exception (ECT), Eager Test (ET), General Fixture (GF),
Lazy Test (LT)}, and the control variables. For each variable, the table re-
ports the value of the Estimate, the standard error (SE), and the Odds ratio
(OR). We reported the Estimate and OR values in bold to indicate statistical
significance through the p− value < 0.05.

When building the models, we analyzed for multi-collinearity between
the independent and control variables. The control variables releases1month,
releases3months, releases6months, and releases12months have a high multi-
collinearity among them. It is natural for these variables to be highly correlated
because releases in shorter periods will likely be included in longer periods. For
example, releases6months is included in releases12months, releases3months is
included in releases6months and releases12months, and releases1month is in-
cluded in all of the others. Therefore, releases1month is less correlated to the
other three variables, and it was kept in the models. A similar analysis per-
tains to the commits release. Regarding the multi-collinearity analysis for the
Qmi and Tsi variables, the AsD metric was kept in all models along with the
AR, DA, ECT, ET, and GF test smells.

With the exception of the Replace Rule annot. w/ assertThrows refactor-
ing, all refactorings have at least one statistically significant variable from
either the Qmi or Tsi set of variables. The result was quite expected since
this refactoring is primarily related to the approach of handling exceptions in
test code rather than directly altering the structural or complexity metrics
of the code. As for the Extract Method refactoring, this is the only one with
statistically significant variables from both sets, i.e., AsD (-0.64) metric, ET (-
5.09), and GF (1.90) test smells. It means that the odds of an Extract Method
refactoring occurring increases as the AsD metric and ET test smell values
decrease, and the value of GF increases.

Concerning the Qmi set, the AsD was statistically significant for most
refactorings. In particular, it was the only significant variable for the Add
Assert Explanation (2.74), Extract Class (-1.34), and Inline Method (-1.90)
refactorings. The positive coefficient for the AsD metric could imply that when
developers encounter higher values for that metric, they are more likely to
opt for the Add Assert Explanation refactoring. The negative coefficient could
imply that developers are more likely to apply Inline Method and Extract Class
when the code has fewer assertions. The WMC is another Qmi metric that is
statistically significant for the Parameterize Test (25.52), indicating that the
refactoring occurs when the methods’ complexity is high.

While test smells in Tsi are not statistically significant for most refactor-
ings, four out of six test smells (Duplicate Assert, Eager Test, General Fixture,

Test Code Refactoring Unveiled 19

Table 4: Results for the statistical model considering quality metrics (Qmi)
and test smells (Tsi). Values in bold indicate the statistical significance.

Metrics Estimate SE OR Metrics Estimate SE OR

Add Assert Explanation Parameterize Test

Intercept -6.18 0.34 0.00 Intercept -3.21 0.49 0.04
LOC release 1.25 0.84 3.48 LOC release -29.23 10.66 0.00
contributors -0.75 0.83 0.47 contributors 7.21 2.49 1,358.45
branches 0.26 0.44 1.29 branches 0.84 0.80 2.32
pull requests 1.09 0.67 2.96 pull requests 0.18 3.85 1.20
commits diff -1.72 1.23 0.18 commits diff -52.49 36.46 0.00
releases 1 month 0.52 0.69 1.67 releases 1 month -10.32 3.50 0.00
RFC -0.57 2.40 0.56 WMC 25.52 14.41 1.2E+11
AsD 2.74 0.74 15.53 RFC -3.24 4.68 0.04
AR 0.55 2.63 1.73 AsD 0.24 1.33 1.27
DA 1.52 1.83 4.59 AR 2.50 16.97 12.22
ECT 1.99 2.47 7.33 DA -26.72 23.44 0.00
GF 0.28 2.49 1.32 ECT -1,093.04 599.96 0.00
LT 0.59 3.75 1.80 ET -81.13 82.87 0.00

GF -60.55 94.08 0.00
LT -50.16 118.39 0.00

Extract Class Replace Test annot. w/ assertThrows

Intercept -4.51 0.22 0.01 Intercept -3.65 0.41 0.03
LOC release 0.98 0.60 2.66 LOC release -27.03 8.51 0.00
contributors -2.04 0.97 0.13 contributors 5.09 2.66 162.50
branches 1.10 0.27 2.99 branches 1.90 0.72 6.71
pull requests 0.30 0.79 1.35 pull requests -4.08 4.65 0.02
commits diff 1.01 0.48 2.75 commits diff -53.60 31.64 0.00
commits release -0.28 0.66 0.75 releases 1 month -12.65 3.08 0.00
releases 1 month 0.01 0.49 1.01 LOC 4.51 3.32 90.87
RFC 0.28 1.85 1.33 AsD 2.17 0.98 8.72
AsD -1.34 0.68 0.26 AR -1.53 4.33 0.22
AR -0.60 2.42 0.55 DA -40.98 17.37 0.00
DA -0.21 1.73 0.81 ECT -1.40 4.01 0.25
ECT 2.30 1.85 10.02 ET -3.62 2.49 0.03
ET 0.91 2.17 2.49 GF -2,543.00 1.2E+05 0.00
GF -9.01 5.15 0.00 LT 11.46 5.03 9.5E+04
LT 2.69 2.33 14.67

Extract Method Replace Rule annot. w/ assertThrows

Intercept -2.96 0.10 0.05 Intercept -4.89 0.46 0.01
LOC release 0.00 0.36 1.00 LOC release 5.41 0.94 222.72
contributors -0.16 0.30 0.85 contributors 0.78 1.61 2.18
branches 0.69 0.13 2.00 branches -2.46 2.00 0.09
pull requests -1.01 0.41 0.36 pull requests 0.06 2.40 1.06
commits diff 0.76 0.30 2.14 commits diff -24.54 18.11 0.00
commits release 0.03 0.29 1.03 releases 1 month -14.22 4.05 0.00
releases 1 month -0.38 0.24 0.68 AsD 0.20 1.39 1.22
RFC 3.63 0.59 37.90 AR 4.08 2.96 59.42
AsD -0.64 0.31 0.53 DA -2.23 3.81 0.11
AR -0.76 0.85 0.47 ECT -3.35 6.07 0.04
DA 1.05 0.56 2.86 ET 2.03 2.13 7.63
ECT -0.18 0.79 0.83 GF -5.37 9.66 0.00
ET -5.09 1.46 0.01
GF 1.90 0.65 6.70
LT 2.44 1.43 11.50

Inline Method Replace try/catch w/ assertThrows

Intercept -4.52 0.24 0.01 Intercept -5.71 0.59 0.00
LOC release -0.79 0.88 0.46 LOC release -6.98 5.51 0.00
contributors -1.19 0.70 0.31 branches 0.74 1.16 2.09
branches 0.81 0.29 2.24 pull requests -14.04 9.29 0.00
pull requests -1.14 0.72 0.32 commits diff 1.48 3.46 4.41
commits diff 0.72 0.66 2.05 commits release 1.33 3.16 3.80
releases 1 month 0.69 0.47 2.00 releases 1 month -4.57 2.18 0.01
RFC 1.53 1.54 4.64 AsD 2.21 1.42 9.07
AsD -1.90 0.77 0.15 DA 3.58 2.77 36.01
AR 0.78 2.03 2.17 ECT -20.31 20.81 0.00
DA 0.80 1.37 2.23 ET 2.75 2.75 15.64
ECT 0.38 2.16 1.46 GF 5.69 6.89 296.49
ET -0.49 2.88 0.61 LT 1.83 6.07 6.24
GF -1.80 2.54 0.17
LT 0.60 4.01 1.82

20 Luana Martins et al.

and Lazy Test) show significance in at least one of the models for the Extract
Method, Replace Test annot. w/ assertThrows, Replace try/catch w/ assert-
Throws refactorings. It is worth noting that even though the latter two refac-
torings address exception handling in different ways, the ECT test smell was
not found to be significant for them—which could be due to the granularity of
test smells and metrics calculation. Interestingly, for the two refactorings, the
DA test smell has opposite coefficients; its value is negative for the Replace
Test annot. w/ assertThrows (-40.98) and positive for the Replace try/catch
w/ assertThrows (3.58). Besides, the LT test smell is significant to the Replace
Test annot. w/ assertThrows refactoring (11.46), and ET test smell for Re-
place try/catch w/ assertThrows (2.75). These findings might suggest that the
former refactoring disperses concerns across different methods, and the latter
consolidates them into one.

� Answer RQ1. Except for the “Replace Rule annot. w/ assertThrows”
refactoring, all other refactorings exhibit statistical significance in at least
one variable from either the quality metrics (Qmi) or test smells (Tsi) vari-
able sets. It underscores the complementary role of structural metrics and
test smells in guiding refactoring efforts. As there is a significant difference
in terms of the amount of refactoring operations (refk) performed on test
classes having different values of Qmi and Tsi, we refute the Hn1Qmi−refk

and Hn1Tsi−refk .

5.2 Are test refactorings performed in classes with low effectiveness? (RQ2)

In RQ2, we used Dataset B, i.e., the dataset in which we collected both static
and dynamic metrics from 12 projects, to build a logistic model. Instead of an-
alyzing dynamic metrics in isolation, we considered them while accounting for
the overall quality of the tests considered in terms of quality metrics and test
smells. The approach could help reduce bias as certain metrics coming from
RQ1 may not be relevant anymore when accounted with dynamic metrics. At
the same time, dynamic metrics may and may not be relevant depending on
the quality of the tests. Therefore, despite being performed on a smaller scale,
this analysis aims to provide finer-grained observations on where developers
perform test refactoring.

First, we analyzed the multi-collinearity between the independent and con-
trol variables. Table 5 reports the results of the Logistic Regression Model for
the refk refactoring in the set of refactoring operations considered in the study,
the Emi effectiveness metric in {Line Coverage (LC), Branch Coverage (BC),
Mutation Coverage (MC)}, the Qmi quality metric in {Lines of Code (LOC),
Number of Methods (NOM), Weight Method Class (WMC), Response for
a Class (RFC), Assertion Density (AsD)}, the Tsi test smells in {Assertion
Roulette (AR), Duplicate Assert (DA), Handling Exception (ECT), Eager Test
(ET), General Fixture (GF), Lazy Test (LT)} and the control variables. The
table shows the value of the Estimate, the standard error (SE), and the Odds

Test Code Refactoring Unveiled 21

ratio (OR) for each variable. The Estimate and OR values are formatted in
bold to indicate statistical significance through the p− value < 0.05.

During our analysis, we observed low data points for most refactoring op-
erations. In particular, the Extract Class, Parameterized Test, Replace Test
annot. w/ assertThrows, Replace Rule with assertThrows, and Replace try/-
catch with assertThrows refactorings did not occur in the test classes for which
the tools calculated the effectiveness metrics. In addition, the Add Assert Argu-
ment refactoring has few instances, and the model could not converge. There-
fore, in RQ2, we focus on Extract Method and Inline Method refactorings.

Regarding the Emi metrics, the BC, LC, and MC metrics compose the
model of the Extract Method refactoring. While LC has a negative value (-
1.46), BC and MC have a positive coefficient value (0.67 and 0.52). It indi-
cates that developers find value in extracting methods even when the branch
coverage is high but not when most lines have been covered by the test (i.e.,
low line coverage). Differently, Inline Method refactoring presents a negative
coefficient value for MC (-43.74), indicating that the refactoring might occur
when mutation coverage is low.

Concerning the other metrics, we notice that most test smells compose the
logistic regression model for Extract Method refactoring along with two quality
metrics. Besides, the NOM metric is statistically significant (4.97), indicating
that refactoring occurs when there are a high number of methods. Differently,
the Inline Method refactoring has four test smells; most of them are negative
coefficient values with no statistical significance.

� Answer RQ2. The effectiveness metrics (Emi) did not show a statis-
tically significant contribution to the likelihood of applying test refactorings
(refk). Therefore, we accept Hn3Emi−refk .

5.3 Effects of test refactorings on quality metrics and test smells (RQ3)

Table 6 reports the analysis of the impact of the refk refactoring in the set
of refactoring operations considered in the study for the Qmi quality metrics
in {Lines of Code (LOC), Number of Methods (NOM), Weight Method Class
(WMC), Response for a Class (RFC), Assertion Density (AsD)}. In addition,
Table 7 reports the impact of the refk refactoring concerning the Tsi test
smells in {Assertion Roulette (AR), Duplicate Assert (DA), Handling Excep-
tion (ECT), Eager Test (ET), General Fixture (GF), Lazy Test (LT)}. For
each variable, the tables report the effect size through the Vargha-Delaney
statistical test (Â12). The test indicates whether (i) there are no changes in
the values of the variables before and after applying the refactoring (neutral
effect, ≡), (ii) the values of the variables increased after applying the refac-
toring (negative effect, ↓), and (iii) the values of the variables increased after
applying the refactoring (positive effect, ↑). In addition, the Mann-Whitney U
test shows whether there is a statistically significant difference between the dis-

22 Luana Martins et al.

Table 5: Results for the statistical model considering effectiveness metrics
(Emi), quality metrics (Qmi), and test smells (Tsi). Values in bold indicate
the statistical significance.

Variables Estimate SE OR Variables Estimate SE OR

Intercept -5.12 2.62 0.01 Intercept -0.11 2.74 0.90
branches -10.30 8.03 0.00 branches -6.03 8.23 0.00
commits diff 2.57 1.48 13.01 commits diff -3.28 3.35 0.04
commits release 4.95 2.80 140.55 releases 6 months -1.05 3.45 0.35
releases 1 month 4.20 2.89 66.92 MC -43.74 27572.44 0.00
LC -1.46 2.14 0.23 AR -315.11 73080.58 0.00
BC 0.67 1.56 1.96 DA -93.27 51483.14 0.00
MC 0.52 1.51 1.68 ECT 1.78 2.59 5.95
NOM 4.97 2.41 143.40 GF -22.19 75576.33 0.00
AsD 0.17 3.31 1.18
DA -2.58 3.31 0.08
ECT 1.44 1.89 4.23
ET 2.94 3.10 19.00
GF -11.36 2280.79 0.00

Table 6: Results for the effect size on the quality metrics (Qmi).

Quality Metrics U test p-value Â12 Quality Metrics U test p-value Â12

Add Assert Explanation Parameterize Test

LOC -0.67 0.51 0.50 ≡ LOC 1.47 0.15 0.52 ↑
NOM 0.29 0.77 0.50 ≡ NOM 1.73 0.10 0.52 ↑
WMC -0.34 0.74 0.50 ≡ WMC 1.49 0.15 0.52 ↑
RFC -1.39 0.17 0.50 ≡ RFC 1.67 0.11 0.52 ↑
AsD 0.00 1.00 0.50 ≡ AsD -0.60 0.56 0.49 ↓

Extract Class Replace Test annot. w/ assertThrows

LOC 2.65 0.01 0.52 ↑ LOC 1.67 0.10 0.51 ↑
NOM 2.02 0.04 0.51 ↑ NOM 1.00 0.32 0.50 ≡
WMC 2.02 0.05 0.51 ↑ WMC 1.72 0.09 0.51 ↑
RFC 2.66 0.01 0.52 ↑ RFC 1.73 0.09 0.51 ↑
AsD -0.48 0.63 0.50 ≡ AsD -1.73 0.09 0.49 ↓

Extract Method Replace Rule annot. w/ assertThrows

LOC -2.25 0.02 0.50 ≡ LOC 1.00 0.33 0.50 ≡
NOM -2.84 0.00 0.49 ↓ NOM NaN NaN 0.50 ≡
WMC -2.82 0.01 0.49 ↓ WMC NaN NaN 0.50 ≡
RFC -2.22 0.03 0.50 ≡ RFC -1.00 0.33 0.50 ≡
AsD 0.29 0.77 0.50 ≡ AsD -1.00 0.33 0.49 ↓

Inline Method Replace try/catch w/ assertThrows

LOC 0.59 0.56 0.50 ≡ LOC NaN NaN 0.50 ≡
NOM 0.55 0.59 0.50 ≡ NOM NaN NaN 0.50 ≡
WMC 0.36 0.72 0.50 ≡ WMC NaN NaN 0.50 ≡
RFC 0.59 0.56 0.50 ≡ RFC NaN NaN 0.50 ≡
AsD -0.42 0.68 0.50 ≡ AsD NaN NaN 0.50 ≡

Test Code Refactoring Unveiled 23

tributions corresponding to the test code quality before and after refactorings,
with the p− value indicating the statistical significance.

When analyzing the values of the Qmi quality metrics in Table 6, we notice
that the values remained the same before and after applying most of the test
refactorings. Although a few test classes were refactored in two consecutive
releases, the values of the metrics changed after applying only two refactor-
ings from Fowler’s catalog. More specifically, the Extract Class refactoring
improved the test classes concerning the Lines of Code (LOC), Number of
Methods (NOM), Weight Method Class (WMC), and Response for a Class
(RFC) metrics (0.51 and 0.52). Differently, after applying the Extract Method
refactoring, the NOM and WMC metrics increased their values (0.49). These
results were quite expected.

On the one hand, the Extract Class reduces the complexity and size of
the original test class by extracting part of it into a new class. This can be
illustrated by the extraction of a superclass and two other classes from the
BinderTest7 test class of the vaadin/framework project. Listing 1 shows the
code extracted from BinderTest, and the generated classes. The diff highlights
in red the lines removed, and in green the lines added. Originally, BinderTest
had the metrics values: LOC = 1,311, NOM = 72, WMC = 81, and RFC =
88. All these metrics values significantly exceed the threshold values typically
observed in high-quality systems by previous literature (see Table 1, i.e., LOC
≤ 222, NOM ≤ 16, WMC ≤ 32, and RFC ≤ 49; hence suggesting that the
class was of low-quality. After the refactoring, instead, BinderTest presented
significantly reduced metrics values, fitting the threshold values: LOC = 177,
NOM = 18, WMC = 18, and RFC = 18.

On the other hand, Extract Method refactoring improves cohesion and re-
duces code duplication, but it might increase the complexity of the class and
the number of methods. In the NodeBasedNodeContractorTest8 test class of
the graphhopper/graphhopper project, we can observe three Extract Method
refactorings. Listing 2 shows the createIgnoreNodeFilter method being
extracted from testShortestPathSkipNode, testShortestPathSkipNode2,
and testShortestPathLimit methods. Before the refactoring, the test class
had the metrics values: RFC = 31, WMC = 28, NOM = 22, and LOC =
395. The extraction of the method increased the quality metrics by one unit.
Although these values, except for LOC, fall within the thresholds described
in Table 1, the higher values of the metrics after the refactoring suggest a
potential increase in complexity.

As for the test-specific refactorings, the Assertion Density metric presents a
negative effect after applying the Parameterized Test, Replace Test annot. w/
assertThrows and Replace Rule annot. w/ assertThrows (0.49). Using test an-
notations does not require the method to have assertions to verify the results,
but after the refactoring, new assertions are introduced. Listing 3 shows the re-

7 Commit: https://github.com/vaadin/framework/commit/41516b54350bdfb597d6f60
961266d3c2c57b880

8 Commit: https://github.com/graphhopper/graphhopper/commit/d3381bebedae15c3
60e1b5cadc0a9e4644de5950

24 Luana Martins et al.

27 -

46 -

47 -

48 -

49 -

13 +

57 14

58 15

59 16

60 17

61 -

62 -

63 -

64 -

18 +

19 +

20 +

65 21

186 -

1310 176

1311 177 }

30 +

▪️▪️▪️
42 +

43 +

▪️▪️▪️
52 +

53 +

54 +

55 +

56 +

57 +

30 +

31 +

▪️▪️▪️
36 +

37 +

38 +

39 +

40 +

41 +

42 +

▪️▪️▪️
507

41 +

42 +

▪️▪️▪️
687

public class

new

 public class extends

public

new

new

new

new

public throws

new

public class extends

public

new

new

public class extends

BinderTest {

 TextField nameField;

 TextField ageField;

 Person p = Person();

BinderTest BinderTestBase<Binder<Person>, Person> {

void () {

 binder = Binder<>();

 p. ();

 p. (32);

 nameField = TextField();

 ageField = TextField();

 item = Person();

 item. ();

 item. (32);

 }

void () ValidationException {

 }

 nameField = TextField();

 }

}

BinderValidationStatusTest

 BinderTestBase<Binder<Person>, Person> {

void () {

 binder = Binder<>();

 item = Person();

 item. ();

 item. (32);

 }

}

BinderConverterValidatorTest

 BinderTestBase<Binder<Person>, Person> {

}

▪️▪️▪️ // Code supressed for redability

▪️▪️▪️ // Code supressed for redability

▪️▪️▪️ // Code supressed for redability

// Code supressed for redability

// Code supressed for redability

// Code supressed for redability

// Code supressed for redability

// Code supressed for redability

 @Before

 @Before

 @Before

setUp

setFirstName

setAge

setFirstName

setAge

validate_notBound_noErrors

setUp

setFirstName

setAge

"Johannes"

"Johannes"

"Johannes"

public abstract class extends

 protected
 protected

public

new

BinderTestBase<BINDER Binder<ITEM>, ITEM> {

TextField nameField;
TextField ageField;

void () {

 ageField = TextField();

setUpBase

Listing 1: Refactoring in the BinderTest to extract: BinderTestBase,
BinderValidationStatusTest, and BinderConverterValidatorTest.

Test Code Refactoring Unveiled 25

42 - NodeContractorTest {

39 + NodeBasedNodeContractorTest {

▪️▪️▪️
80 78 () {

81 79 createExampleGraph();

▪️▪️▪️
88 - algo. (new NodeContractor. (lg, graph. ()). (3));

86 + algo. (createIgnoreNodeFilter(3));

242 276

100 98 ()

244 278 createExampleGraph();

▪️▪️▪️
108 - algo. (new NodeContractor. (lg, graph. ()). (3));

106 + algo. (createIgnoreNodeFilter(3));

▪️▪️▪️
118 116 () {

▪️▪️▪️
124 - algo. (new NodeContractor. (lg, graph. ()). (3));

122 + algo. (createIgnoreNodeFilter(3));

▪️▪️▪️
338 IgnoreNodeFilter (int node) {

339 IgnoreNodeFilter(lg, graph. ()). (node);

340 }

▪️▪️▪️
395 397 }

public class

public class

 public void

 public void

 public void

 private

return new

// Code supressed for redability

// Code supressed for redability

// Code supressed for redability

// Code supressed for redability

// Code supressed for redability

// Code supressed for redability

// Code supressed for redability

testShortestPathSkipNode

setEdgeFilter IgnoreNodeFilter getNodes setAvoidNode

setEdgeFilter

testShortestPathSkipNode2

setEdgeFilter IgnoreNodeFilter getNodes setAvoidNode

setEdgeFilter

testShortestPathLimit

setEdgeFilter IgnoreNodeFilter getNodes setAvoidNode

setEdgeFilter

createIgnoreNodeFilter

getNodes setAvoidNode

Listing 2: Method extraction from testShortestPathSkipNode,
testShortestPathSkipNode2, and testShortestPathLimit, generating
the createIgnoreNodeFilter method.

placement of the annotation in the shouldThrowAnExceptionForUnknownCode
method by an assertThrows (from lines 9, 13 to 10, 14). The refactoring oc-
curs in the ChartRangeTest9 class of the iextrading4j project. Although
there are no major changes in the quality metrics before and after refactor-
ing, the code is improved by adding an assertion method. Differently, the
Parameterized Test allows the removal of loop structures, improving LOC,
NOM, WMC, RFC metrics (0.52). The Replace Test annot. w/ assertThrows
also allows the removal of redundant code for exception handling within test
methods, improving the values of the LOC, and WMC metrics (0.51). As
another example, Listing 4 shows the replacement of the try/catch block by
an assertThrows. The refactoring occurs in the EmissaryTest10 class of the
NationalSecurityAgency/emissary project. Besides the decrease of the LOC
from 328 to 233, almost fitting the threshold value of 222 (Table 1), we observe
that WMC also decreased by 1 unit.

Focusing on Table 7, we observe that most test classes where develop-
ers applied refactorings retain the same values of test smells. As previously

9 Commit: https://github.com/WojciechZankowski/iextrading4j/commit/70eaf30a6
34b22320dc7aafb71d35fae0b7c02a3
10 Commit: https://github.com/NationalSecurityAgency/emissary/commit/13588180
f888b86eea71167c7ec441ecc1c25d9a

26 Luana Martins et al.

7 8 ChartRangeTest {

8 9

9 -

10 +

10 11

11 12

12 13

13 -

14 +

14 15 }

▪️▪️▪️
26 27 }

public class

 public void

 final

class

 @Test(expected = IllegalArgumentException.class)

 @Test

() {

String code = ;

 ChartRange. (code);

(IllegalArgumentException. , () -> ChartRange. (code));

shouldThrowAnExceptionForUnknownCode

getValueFromCode

 assertThrows getValueFromCode

"12m"

// Code supressed for redability

Listing 3: Replacement of test annotation in the
shouldThrowAnExceptionForUnknownCode method by an assertThrows.

31 31

32 32

33 33

34 34

35 -

36 -

37 -

38 -

39 -

40 -

35 +

41 36 }

public class extends

 public void

try

catch

class
new

EmissaryTest UnitTest

 @Test

() {

{

 Emissary.EMISSARY_COMMANDS.put("junk", new JunkCommand());

();

 } (UnsupportedOperationException e) {

 }

(UnsupportedOperationException. , () -> Emissary.
 . (, JunkCommand()));

testDefaultCommandsUnmodifiable

fail

assertThrows
put

"Should have thrown"

"junk"

 // this is the right path

EMISSARY_COMMANDS

Listing 4: Replacement of try/catch block in the
testDefaultCommandsUnmodifiable method by an assertThrows.

stated, only a few test classes were refactored in two consecutive releases. We
can also observe that the Add Assert Explanation, Extract Class, and Replace
Test cannot. w/ assertThrows refactorings led to an increase in the number
of test smells. For example, after applying the Extract Class, the test meth-
ods that interact with the newly extracted class may become more complex
and tightly coupled to the implementation details of the extracted class. List-
ing 1 presents the code extracted from BinderTest of the vaadin/framework
project. The extraction of class attributes (lines 46 - 49) and setup (lines 61
- 64) generated the BinderTestBase superclass. The extraction of methods
(lines 186 - 1310) generated the BinderConverterValidatorTest, and the
BinderValidationStatusTest classes. Before the refactoring, the TextField
nameField and TextField ageField fields were being set up together, even
though individual tests may not need all of them, i.e., indicating a General
Fixture test smell. After refactoring, the BinderTestBase handles the generic
setup for fields, while BinderTest focuses on binder-specific setup.

Test Code Refactoring Unveiled 27

Table 7: Results for the effect size on the test smells (Tsi) after a refactoring.

Test Smells U test p-value Â12 Test Smells U test –value Â12

Add Assert Explanation Parameterize Test

AR 0.00 1.00 0.50 ≡ AR -2.61 0.02 0.38 ↓
DA 0.81 0.42 0.50 ≡ DA NaN NaN 0.50 ≡
ECT -0.62 0.54 0.49 ↓ ECT -1.74 0.09 0.42 ↓
ET -0.63 0.53 0.50 ≡ ET -1.00 0.33 0.48 ↓
GF -0.42 0.67 0.49 ↓ GF -2.03 0.05 0.42 ↓
LT -0.15 0.88 0.50 ≡ LT -1.43 0.16 0.46 ↓

Extract Class Replace Test annot. w/ assertThrows

AR -1.68 0.09 0.49 ↓ AR -1.29 0.21 0.47 ↓
DA -1.42 0.16 0.50 ≡ DA -1.00 0.32 0.48 ↓
ECT -1.38 0.17 0.49 ↓ ECT -1.47 0.15 0.45 ↓
ET -1.27 0.21 0.50 ≡ ET -1.43 0.16 0.46 ↓
GF -0.89 0.37 0.50 ≡ GF -1.41 0.17 0.44 ↓
LT -1.41 0.16 0.49 ↓ LT -1.62 0.11 0.44 ↓

Extract Method Replace Rule annot. w/ assertThrows

AR 1.45 0.15 0.50 ≡ AR 1.00 0.33 0.51 ↑
DA 1.00 0.32 0.50 ≡ DA NaN NaN 0.50 ≡
ECT 2.30 0.02 0.50 ≡ ECT NaN NaN 0.50 ≡
ET -0.30 0.77 0.50 ≡ ET NaN NaN 0.50 ≡
GF -0.34 0.73 0.50 ≡ GF NaN NaN 0.50 ≡
LT -0.09 0.93 0.50 ≡ LT NaN NaN 0.50 ≡

Inline Method Replace try/catch w/ assertThrows

AR 1.72 0.09 0.50 ≡ AR NaN NaN 0.50 ≡
DA 1.27 0.21 0.50 ≡ DA NaN NaN 0.50 ≡
ECT 2.12 0.04 0.50 ≡ ECT NaN NaN 0.50 ≡
ET 1.00 0.32 0.50 ≡ ET NaN NaN 0.50 ≡
GF 1.37 0.17 0.50 ≡ GF NaN NaN 0.50 ≡
LT 1.00 0.32 0.50 ≡ LT NaN NaN 0.50 ≡

Additionally, it is worth noticing that the Mann-Whitney U test shows no
statistically significant difference in the numbers of test smells before and af-
ter test-specific refactorings. Inclusively, the statistical test did not perform for
some refactoring types (e.g., Parameterize Test, Replace Rule annot. w/ as-
sertThrows, and Replace try/catch with assertThrows refactorings), indicated
by NaN values. It may occur due to the low amount of data referring to refac-
torings and test smells.

� Answer RQ3. The values of the quality metrics (Qmi) changed after
applying refactorings (refk) from Fowler’s catalog. In particular, the Extract
Class improved the coupling, cohesion, and size of the test code. Differently,
after applying some test-specific refactorings, the number of test smells (Tsi)
increased. As there is a significant difference in terms of the amount of Qmi

and Tsi, we can refute Hn4Qmi−refk and Hn5Tsi−refk .

28 Luana Martins et al.

Table 8: Results for the effect size on the effectiveness metrics (Emi), quality
metrics (Qmi), and test smells (Tsi) before and after a refactoring.

Test Smells U test p-value Â12 Test Smells U test p-value Â12

Extract Method Inline Method

LOC -1.80 0.10 0.47 ↓ LOC NaN NaN 0.50 ≡
NOM -1.84 0.09 0.47 ↓ NOM NaN NaN 0.50 ≡
WMC -1.79 0.10 0.47 ↓ WMC NaN NaN 0.50 ≡
RFC -1.68 0.12 0.48 ↓ RFC NaN NaN 0.50 ≡
AsD -1.00 0.34 0.48 ↓ AsD NaN NaN 0.50 ≡
AR NaN NaN 0.50 ≡ AR NaN NaN 0.50 ≡
DA -1.00 0.34 0.47 ↓ DA NaN NaN 0.50 ≡
ECT -1.48 0.17 0.46 ↓ ECT NaN NaN 0.50 ≡
ET -1.44 0.17 0.46 ↓ ET NaN NaN 0.50 ≡
GF NaN NaN 0.50 ≡ GF NaN NaN 0.50 ≡
LT -1.75 0.11 0.48 ↓ LT NaN NaN 0.50 ≡
LC -1.19 0.26 0.46 ↑ LC NaN NaN 0.50 ≡
BC -0.68 0.51 0.49 ↑ BC NaN NaN 0.50 ≡
MC NaN NaN 0.50 ≡ MC NaN NaN 0.50 ≡

5.4 Effects of test refactorings on code effectiveness (RQ4)

In RQ4, we considered the smaller amount of data contained in dataset B to
analyze the effects of test refactorings on the effectiveness metrics. In addi-
tion, we selected only the instances where the refactorings actually occurred.
For that reason, we follow the analysis with two out of four test refactorings
(Extract Method and Inline Method).

In this analysis, we assume that an increase in the Emi effectiveness metrics
in {Line Coverage (LC), Branch Coverage (BC), Mutation Coverage (MC)}
would imply an improvement in the test code quality. The Vargha-Delaney
statistical test (Â12) indicates whether (i) there are no changes in the values
of the variables before and after applying the refactoring (neutral effect, ≡),
(ii) the values of the variables increased after applying the refactoring (posi-
tive effect, ↑), and (iii) the values of the variables decreased after applying the
refactoring (negative effect, ↓). On the contrary, we assume that increasing the
values of Qmi quality metrics in {Lines of Code (LOC), Number of Methods
(NOM), Weight Method Class (WMC), Response for a Class (RFC), Asser-
tion Density (AsD)}, or Tsi test smells in {Assertion Roulette (AR), Duplicate
Assert (DA), Handling Exception (ECT), Eager Test (ET), General Fixture
(GF), Lazy Test (LT)}, would reduce the test code quality. In addition, the
Mann-Whitney U test shows whether there is a statistically significant differ-
ence between the distributions corresponding to the test code quality before
and after refactorings, with the p−value indicating the statistical significance.

Table 8 reports the results of the analysis of the effect size for two refk
refactorings considered in the study. Although not performed systematically,
we could observe the benefits of refactorings in the code coverage. More specif-
ically, the Extract Method refactoring positively affects line and branch cov-

Test Code Refactoring Unveiled 29

5 11 public class extends

 public void

public void

 private void

 JTSOpCmdTest TestCase {

▪️▪️▪️
97 + () {

98 + runCmd(args(, , , ,),

99 + (),

100 +);

101 + }

▪️▪️▪️
95 132 (String[] args, String expected)

96 133 {

134 + runCmd(args, null, expected);

135 }

97 136

137 + (String[] args, InputStream stdin, String expected) {

▪️▪️▪️
151 + }

110 152 }

// Code supressed for redability

// Code supressed for redability

// Code supressed for redability

testStdInWKT

stdin

runCmd

runCmd

"-a" "stdin" "-f" "wkt" "envelope"

"LINESTRING (1 1, 2 2)"

"POLYGON"

Listing 5: Extraction of runCmd(String[], InputStream, String) and its
reuse by new methods.

erage. For example, the runCmd(String[], InputStream, String) method
was extracted from runCmd(String[], String)method in the JTSOpCmdTest
class11 of locationtech/jts project to allow reusability into newly added test
methods. Listing 5 shows the extraction of runCmd(String[], InputStream,

String) (lines 137 - 151) and a new method testStdInWKT calling it (lines
97 - 101). The Mann-Whitney U test shows there is no statistically significant
difference between the distributions before and after refactorings. The lack of
statistical significance could be due to a limited number of instances of the
test refactorings in the dataset.

� Answer RQ4. For the few instances with test refactorings (refk), we
could notice an improvement in the effectiveness metrics (Emi) for the Ex-
tract Method refactoring. However, there is no statistically significant dif-
ference in the test code quality before and after the refactorings, leading us
to accept Hn6Emi−refk .

6 Discussion and Implications

The results of the study provided us with a number of observations, reflections,
and implications for research and practice. In this section, we elaborate on the
main insights coming from our study.

11 Commit: https://github.com/locationtech/jts/commit/e989f8dba024a61387407b7
75ec81c9b93854db9

30 Luana Martins et al.

6.1 Summary of the main findings

When analyzing whether the low-quality test code drives test refactorings, we
observed the Assertion Density (AsD) metric is related to most test refactor-
ings. It indicates that the more assertions in the test code, the more likely
developers would refactor it. At the same time, test refactorings such as the
Parameterize Test, Replace Test annot. with assertThrows, Replace Rule with
assertThrows, and Replace try/catch w/ assertThrows refactorings were not
related to the number of assertions because they refer to changes in the test
structure or address some other non-density related concern (e.g., migration
of testing framework). For example, developers usually place assertions within
loop structures in the test code to assert the same condition with different
values. With the Parameterize Test refactoring, developers remove the loop
structure, but the test method continues under tests with a set of values passed
as parameters. As for the negative relation of the Extract Class and Extract
Method refactorings to the AsD metric, we can understand it allows classes
and methods to focus on specific aspects of the test logic, leading to a more
modular structure. For example, some test methods implement hard logic to
stimulate the production class but have few assertions, indicating developers
could place logic into another class or method to allow reusability. In con-
clusion of this first observation, we may argue that our findings complement
previous knowledge on the properties of AsD [9,11,25]: not only a high AsD
typically reduces fault proneness of production code, but it is also able to drive
test refactoring in most cases.

¤ Finding1. Assertion Density is a good indicator of test refactorings.
Test refactorings not driven by Assertion Density refer to changes in the
test structure possibly indicating migration of testing frameworks.

In addition, we found some unexpected results when analyzing whether
the presence of test smells drives the test refactorings. The literature points
out that the Add Assert Argument refactoring is applied to solve the Asser-
tion Roulette (AR) test smell, and the Replace try/catch with assertThrows
refactoring is often used to remove the Handling Exception (ECT) test smell
[13]. However, no significant correlation exists between them, indicating that
those refactorings can stem from variations in coding styles or project-specific
guidelines. It is also interesting to notice that the Extract Method refactoring
is negatively related to or does not have a relationship with the test smells
responsible for indicating the method has spread or tangled concerns, i.e., the
Handling Exception (ECT) and Lazy Test (LT) test smells. On the one hand,
these findings seem to call for further research on the motivations behind the
application of refactoring operations: this is indeed a current knowledge gap,
as previous work solely focused on the reasons driving production code refac-
toring [50]. On the other hand, our observations may potentially suggest im-
provements for test refactoring recommenders, e.g., information coming from
the projects’ guidelines may empower the support provided to practitioners.

Test Code Refactoring Unveiled 31

¤ Finding2. Test smell-driven refactorings lack consistent correlation,
suggesting diverse motivations beyond test smell removal.

Finally, the analysis of whether the test refactorings improve the code
quality shows that most test classes maintained stable metric values. Still, the
Extract Class, Parameterized Test, and Replace Test annot. w/ assertThrows
refactorings improve most quality metrics. Another interesting finding con-
cerns the Extract Method refactoring. While it might not be driven by improv-
ing quality metrics or test smells, it shows an improvement in the effectiveness
metrics. It highlights the trade-offs when applying this refactoring operation.
These observations highlight a key, additional property of test refactoring: our
findings indeed reveal that even if not performed systematically, test refactor-
ing may be beneficial for the effectiveness of test code. In this respect, our
results may encourage further research on multi-objective test refactoring rec-
ommendations and prioritization. These approaches aim not only to enhance
test code quality but also to address the effects on code and mutation coverage.
Additionally, our results may raise practitioners’ awareness of the advantages
of test refactoring, making them more inclined to adopt systematic strategies
for conducting regular refactoring initiatives.

¤ Finding3. Test refactoring has a positive effect on effectiveness and,
even if not performed systematically, we could already observe the benefits
of extracting methods for line and branch coverage.

6.2 Implications and Lessons Learned

Interplay of Effectiveness and Quality Metrics. The Extract Method
refactoring is a compelling example of this dynamic. Our analysis shows that
quality metrics and test smells drive such refactoring. In addition, the refac-
toring positively impacts effectiveness metrics and negatively impacts quality
metrics. As a practical implication, developers can strategically choose code
sections for extraction to enhance code cohesion and reduce test smells. More
specifically, developers could prioritize classes with lower Assertion Density
(AsD) metric and a higher presence of the General Fixture (GF) test smell for
extraction. This highlights the importance of a balanced approach to refactor-
ing, where developers should carefully weigh the benefits of making the decision
to refactor the test code. These findings serve as valuable inputs for researchers
in the field of refactoring and test code quality. The trade-offs between qual-
ity and effectiveness have not yet been extensively explored in the context of
test refactoring. This gap represents a promising research opportunity, with
the potential to develop more practical and pragmatic test refactoring recom-
menders and prioritizers that could selectively suggest refactoring practices to
optimize both quality and effectiveness.

32 Luana Martins et al.

� Lesson1. Refactoring may not always have a positive impact on code
quality and effectiveness. Refactoring recommenders could help developers
analyze the trade-offs of applying a refactoring operation.

Impact of Test Refactorings on Code Quality. While most test classes
maintain stable metric values post-refactoring, Extract Class and Replace Test
annot. w/ assertThrows refactorings improve quality metrics. Differently, Ex-
tract Method refactoring improves the effectiveness metrics and reduces qual-
ity metrics, highlighting trade-offs associated with this refactoring operation.
Therefore, understanding the impact of different refactorings on code quality
metrics informs developers about potential trade-offs and benefits associated
with specific refactorings. This knowledge can guide decision-making processes
during the refactoring phase, allowing developers to choose which refactoring
operation leads to tangible improvements in code quality and effectiveness. Our
findings, therefore, open the way to further empirical investigations into the
properties of specific test code refactoring operations: we deem these empirical
studies instrumental to the definition of improved refactoring recommendation
and prioritization strategies.

� Lesson2. Deciding which refactoring operation is best in a context is not
easy. More empirical research on the peculiarities of each test code refac-
toring practice may shed light on the strategies to adopt when implementing
refactoring recommendation and prioritization approaches.

Unexpected Relationship Between Test Smells and Refactorings.
There is no significant correlation between certain test smells and correspond-
ing refactorings, such as Assertion Roulette with Add Assert Argument, and
Handling Exception with Replace try/catch with assertThrows. These unex-
pected relationships suggest that refactorings may not always directly address
or resolve associated test smells. In relation to this lesson learned, we may
find multiple actionable implications. In the first place, practitioners and re-
searchers may consider project-specific contexts and coding styles when inter-
preting the relationships between test smells and refactorings. This may not
only optimize the current quality assurance practices applied by developers,
but also suggest improvements in the way refactoring recommendations should
be provided. We may envision further studies on the role played by contex-
tual, project-specific indicators on the quality of refactoring recommendations
provided to practitioners. In the second place, our results clearly indicate the
need for more empirical investigations into the actual motivations driving test
code refactoring decisions. Our study suggests the existence of alternative mo-
tivations that go beyond test code quality and effectiveness. An improved
understanding of these alternative motivations may enlarge the knowledge of
the practices applied by developers, possibly providing further insights on how
to design effective refactoring recommenders and prioritizers.

Test Code Refactoring Unveiled 33

� Lesson3. Contextual factors might influence the test smell-refactoring
relationships. Therefore, developers and researchers should consider project
specifics and coding styles when refactoring test code.

Challenges of Mining Static and Dynamic Metrics. As a final point
of discussion, let us elaborate on the challenges faced when applying mining
software repository techniques to the analysis of test code change history.
In particular, our tooling required the compilation of past snapshots of the
systems in order to execute test suites and compute test code effectiveness
indicators. Unfortunately, we failed in most cases, implying a notable reduction
of the sample and, consequently, of the generalizability of our findings. The
challenges of analyzing change history information have been already explored
by researchers in the past [29,58]: we could corroborate them, showing that
the mining of dynamic metrics failed in ≈93% of the projects, i.e., we could
analyze only 12 projects out of the 175.

Furthermore, integrating data from several automated tools for measuring
code quality, detecting test smells, and mining refactoring operations presents
challenges in achieving uniform metric computation and dataset consistency.
Dependency issues and tool-specific requirements can also hinder metrics cal-
culation. While we addressed these issues by establishing traceability links
between the tools and creating separate datasets based on available metrics,
some valuable data may have been overlooked. Additionally, automated tools
should be robust enough to handle diverse project environments and depen-
dencies for comprehensive metric computation.

� Lesson4. Mining dynamic information from change history is challeng-
ing and may threaten the consistency of the dataset collected. Automated
tools that mix quality and effectiveness metrics are needed to allow a more
comprehensive analysis of the test code quality.

7 Threats to validity

This section discusses the potential threats that may affect the validity of our
empirical study plan.

Construct validity. When considering the relationship between theory
and observation, a first threat concerns the criteria we used to select soft-
ware projects: despite the actions to standardize the building process, we had
configuration problems between Pitest, Jacoco and Surefire. Following
the recent insight on how to fix build failures [29,58], we set the <argLine>

property in the header of the Maven configuration file fixing the problem.
Concerning the independent variables used to assess the test code quality,

we did not compute all the Chidamber & Kemerer metrics because some of
them cannot be applied to the context of test code (e.g., Depth Inheritance
Tree). Nevertheless, we have chosen a mix of metrics capturing the test code
size, structural, and dynamic characteristics. A possible threat to validity con-

34 Luana Martins et al.

cerns the identification of the independent and dependent variables through
automated tools. We are aware of the possible noise that might be introduced
in terms of false positives. To partially mitigate this threat, we selected tools
already validated and used by the research community [31,43,45].

When computing test smells, we linked test classes to their correspond-
ing production classes using a pattern-matching approach based on naming
conventions and class hierarchy [45]. While more advanced methods, such as
dynamic slicing, offer higher accuracy, our approach strikes a balance between
accuracy and scalability. However, we did take precautions. Specifically, the
pattern-matching approach can produce false positive links if multiple produc-
tion classes share the same name but exist in different paths. In our study, this
issue did not arise as there were no production classes with identical names but
different paths. However, future replications of our study on different systems
may need to address this potential issue to enhance the linking capabilities of
the pattern-matching approach.

Finally, a potential threat to the validity of our findings stems from inte-
gration challenges between Pitest and Surefire. Specifically, some projects
that build successfully without Pitest encounter failures during the mutation
testing stage. This issue arises from the lack of direct integration between the
two tools, leading to several common problems: (i) tests excluded by Surefire
may still be executed by Pitest, potentially skewing mutation testing results;
(ii) tests that rely on environment variables or configurations set by Surefire
but not replicated in Pitest may fail, causing inconsistencies; and (iii) hidden
dependencies on the order of test execution may surface if Pitest runs the
tests in a different sequence than Surefire. These discrepancies underscore
the importance of careful configuration when using Pitest with Surefire to
ensure reliable and consistent mutation testing outcomes.

Internal Validity. This category of threats to validity concerns by-product
changes of other maintenance activities (e.g., bug fixes or changes in require-
ments) that could also contribute to the removal of test smells. Therefore, the
data analysis might not indicate a causal relationship; rather, there is a pos-
sibility of a relationship that may be further investigated. We corroborated
our quantitative results through some qualitative insights. In addition, we ac-
knowledge test flakiness as a potential threat to the internal validity, which
can impact the reliability of our findings. However, despite being a severe is-
sue for practitioners, previous investigations found test flakiness to arise in a
limited amount of cases, e.g., Luo et al. [28] found out that flaky tests affect
up to 4.56% of test cases. In this sense, it is reasonable to believe that the
problem of test flakiness has a limited impact on our findings.

External Validity. This class of threats to validity mainly concerns the
subject projects of our study. We selected open-source projects developed with
Java 8, which are only a fraction of the complete picture of open-source soft-
ware and do not necessarily represent industrial practices. Therefore, the re-
sults may not be generalized to the industrial context or other programming
languages. In addition, we have selected projects based on the number of stars,

Test Code Refactoring Unveiled 35

which may raise some popularity bias. We partially mitigated this threat by
selecting open-source projects coming from different contexts and organiza-
tions. However, replications of our work would be beneficial to corroborate
our findings in different contexts: to stimulate further research, we release all
materials and scripts as part of an archived online appendix [33].

Finally, we recognize that limit our research to Java 8 may represent a po-
tential threat to validity. Although this is still the most popular version among
developers, newer versions have introduced language features and performance
optimizations that may affect how refactoring operations and test code quality
are approached. This could influence the applicability of our results to projects
using later versions of Java. Replicating our study with more recent versions
would be beneficial in verifying whether similar correlations exist.

Conclusion validity. To address how frequently test refactoring is per-
formed on test classes affected by quality or effectiveness concerns, we have
used logistic regression models to identify correlations. Other than highlight-
ing significant correlations, we have reported and discussed OR values. In
addition, to investigate the effect of test refactoring on test code quality and
effectiveness, we have employed well-established statistical tests such as the
Mann–Whitney Test [30] and the Vargha-Delaney Test (Â12) [60]. Our analysis
was conducted at the granularity of classes because the tools used to extract
variables work at this level. This may bias our conclusions, as this granularity
may be subject to various confounding variables. On the one hand, this is a
limitation that we, unfortunately, share with all the other research works that
analyze dynamic test code metrics [26]. On the other hand, we have included
multiple process- and project-level control variables, through which we have
partially mitigated this threat to validity.

An additional point to remark is that our data collection procedure cannot
distinguish between changes that were meant as refactoring and other changes
where refactoring was applied as part of other modifications. We might have
mitigated this limitation by extracting refactoring changes through the anal-
ysis of issues and pull requests, i.e., collecting changes explicitly intended as
refactoring. Nonetheless, such an alternative method could have biased even
further the conclusions drawn for two reasons connected to the availability
and reliability of the information available within the developers’ discussions
on GitHub. More particularly:

Availability. Previous studies established that developers perform “floss refac-
toring”, combining refactoring operations and behavioral change edits within
individual commits [37]. From a practical standpoint, this means that devel-
opers do not often apply refactoring for the sake of refactoring source code,
but as an instrument to perform other changes, e.g., to simplify a piece of
code before making further evolutionary changes. As such, it is unlikely to
find “pure” refactoring changes or discussions, in the form of issues or pull
requests, around refactoring operations to be applied. To further elaborate
on the matter, we computed the percentage of pure refactoring vs. non-pure
refactoring commits. As a result, we found 20.1% pure refactorings in the

36 Luana Martins et al.

test code, i.e., refactorings restructuring only the test code without changing
anything in the production code. This finding corroborates previous research
on the matter [37], underscoring the practical challenges of isolating refac-
torings in real-world software development scenarios.

Reliability. Literature found that developers not only rarely document refac-
toring activities explicitly [61,62], but also that when they do, they are
inconsistent [3], i.e., labeling changes as refactoring, although no refactoring
is done at all. Other researchers discovered that the term “refactoring” is
misused, i.e., developers do not often correctly distinguish between refactor-
ing changes and normal code modifications [14]. In this respect, the seminal
paper by Murphy-Hill et al. [38] reported that “messages in version histories
are unreliable indicators of refactoring activities. This is due to the fact that
developers do not consistently report/document refactoring activities”. This
observation was also backed up by the findings obtained by Ratzinger et al.
[47], who discovered that the extraction of refactoring documentation from
repositories may lead to several false positives, as the words used by devel-
opers are too generic and do not often refer to real refactoring operations.

As a consequence, the analysis of issues and pull requests would have led
to unreliable conclusions. On the contrary, the goal of a statistical study is ex-
actly identify hidden relations between dependent and independent variables
while controlling for possible confounding effects [19]: we believe that such
an approach better fits our research goals. Through a large-scale, statistical
investigation, we may indeed end up discovering the intrinsic factors associ-
ated with the refactoring actions performed by developers, finally providing
evidence of how test refactoring is done in practice.

Finally, a potential threat to conclusion validity in this study lies in the use
of static analysis tools such as SonarQube, Checkstyle, and PMD, which
may influence developers’ propensity to refactor test code. Given the varied
implementation and usage of these tools, their influence may not be consistent
across all projects and developers. While our study did not explicitly target
these tools, developers might still indirectly improve test code by addressing
general issues highlighted by the tools. The commitment of some developers
to clean code practices, which cannot be systematically measured, could also
confound the results, leading to a potential misinterpretation of the tools’
impact on quality assurance.

8 Conclusion

The ultimate goal of our work was to understand whether the test code quality
and effectiveness provide indications of which test classes are more likely to be
refactored and to what extent test refactoring operations can improve the test
code quality and effectiveness. We conducted this study on a set of 65 open-
source Java projects, starting from the collection of data on the test code
quality, test smells, and refactoring operations arising in the major releases of

Test Code Refactoring Unveiled 37

the projects. Then, we employed statistical approaches to address the goals of
our investigation and, based on the conclusions, we finally provided actionable
items and implications for researchers and practitioners.

The key findings of our study reveal that test refactoring operations typi-
cally address low-quality test cases identified by test smells and quality metrics,
enhancing the coupling and cohesion of test classes. However, no statistically
significant correlation between test refactoring and dynamic metrics was found.
Based on these findings, we identified several lessons learned and implications
for researchers and practitioners.

To sum up, our paper provided the following contributions:

1. An empirical understanding of the factors triggering test refactoring opera-
tions, which comprises an analysis of how test code quality and effectiveness
come into play;

2. Evidence and analysis of the impact of test refactoring on test code quality
and effectiveness;

3. An online appendix [33] in which we provide all material and scripts em-
ployed to address the goals of the study.

The main considerations and conclusions of the study represent the input
for our future research agenda. We plan to develop novel refactoring recom-
menders that explore the trade-off between test code quality and effectiveness.
Furthermore, we plan to investigate the extent to which developers are willing
to perform test code refactorings, including examining project-specific refac-
toring guidelines, such as contribution policies. In addition, we aim to explore
the long-term impacts of test refactoring on project maintenance and evolu-
tion, analyzing how continuous refactoring influences the overall health and
sustainability of software projects. Finally, we will also explore how to integrate
dynamic metrics into refactoring tools, investigating advanced techniques that
might reveal hidden patterns and benefits not apparent in our initial analysis.

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de
Pessoal de Nı́vel Superior – Brasil (CAPES) – Finance Code 001; FAPESB
grants BOL0188/2020 and PIE0002/2022; CNPq grants 315840/2023-4 and
403361/2023-0; This work has also been partially funded by the European
Union under NextGenerationEU with the RECHARGE research project, which
has been funded by MUR PRIN 2022 PNRR program (Code: P2022SELA7).
Views and opinions expressed are however those of the author(s) only and do
not necessarily reflect those of the European Union or The European Research
Executive Agency. Neither the European Union nor the granting authority can
be held responsible for them.

38 Luana Martins et al.

Declaration of Interest

The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported
in this paper.

Data Availability Statement

The manuscript includes data as electronic supplementary material. In par-
ticular, datasets generated and analyzed during the current study, detailed
results, as well as scripts and additional resources useful for reproducing the
study, are available as part of our online appendix on Figshare: https:

//doi.org/10.6084/m9.figshare.23666736.

Credits

Luana Martins: Formal analysis, Investigation, Data Curation, Validation,
Writing - Original Draft, Visualization. Valeria Pontillo: Formal analysis,
Investigation, Data Curation, Validation, Writing - Original Draft, Visualiza-
tion. Heitor Costa: Supervision, Resources, Writing - Review & Editing.
Filomena Ferrucci: Supervision, Resources, Writing - Review & Editing.
Fabio Palomba: Supervision, Resources, Writing - Review & Editing. Ivan
Machado: Supervision, Resources, Writing - Review & Editing.

References

1. Al Dallal, J.: Identifying refactoring opportunities in object-oriented code: A systematic
literature review. Information and Software Technology 58, 231–249 (2015)

2. Aljedaani, W., Peruma, A., Aljohani, A., Alotaibi, M., Mkaouer, M.W., Ouni, A., New-
man, C.D., Ghallab, A., Ludi, S.: Test smell detection tools: A systematic mapping
study. Evaluation and Assessment in Software Engineering, p. 170–180. ACM, New
York, NY, USA (2021)

3. AlOmar, E.A., Peruma, A., Mkaouer, M.W., Newman, C., Ouni, A., Kessentini, M.:
How we refactor and how we document it? on the use of supervised machine learning
algorithms to classify refactoring documentation. Expert Systems with Applications
167, 114176 (2021)

4. Azeem, M.I., Palomba, F., Shi, L., Wang, Q.: Machine learning techniques for code smell
detection: A systematic literature review and meta-analysis. The Journal of Systems
and Software 108, 115–138 (2019)

5. Baqais, A.A.B., Alshayeb, M.: Automatic software refactoring: a systematic literature
review. Software Quality Journal 28(2), 459–502 (2020)

6. Bavota, G., De Carluccio, B., De Lucia, A., Di Penta, M., Oliveto, R., Strollo, O.: When
does a refactoring induce bugs? an empirical study. In: 2012 IEEE 12th International
Working Conference on Source Code Analysis and Manipulation, pp. 104–113. IEEE
(2012)

7. Bavota, G., De Lucia, A., Marcus, A., Oliveto, R.: Recommending refactoring operations
in large software systems. Recommendation Systems in Software Engineering pp. 387–
419 (2014)

Test Code Refactoring Unveiled 39

8. Bland, J.M., Altman, D.G.: The odds ratio. Bmj 320(7247), 1468 (2000)
9. Catolino, G., Palomba, F., Zaidman, A., Ferrucci, F.: How the experience of development

teams relates to assertion density of test classes. In: 2019 IEEE International Conference
on Software Maintenance and Evolution (ICSME), pp. 223–234. IEEE (2019)

10. Chávez, A., Ferreira, I., Fernandes, E., Cedrim, D., Garcia, A.: How does refactoring
affect internal quality attributes? a multi-project study. In: Proceedings of the XXXI
Brazilian Symposium on Software Engineering, SBES ’17, p. 74–83. ACM, New York,
NY, USA (2017)

11. Chen, J., Bai, Y., Hao, D., Zhang, L., Zhang, L., Xie, B.: How do assertions impact
coverage-based test-suite reduction? In: 2017 IEEE International Conference on Soft-
ware Testing, Verification and Validation (ICST), pp. 418–423. IEEE (2017)

12. Damasceno, H., Bezerra, C., Coutinho, E., Machado, I.: Analyzing test smells refactoring
from a developers perspective. In: Proceedings of the XXI Brazilian Symposium on
Software Quality, SBQS ’22. ACM, New York, NY, USA (2023)

13. Deursen, A., Moonen, L.M., Bergh, A., Kok, G.: Refactoring test code. Tech. rep.,
Centre for Mathematics and Computer Science, NLD (2001)

14. Di, Z., Li, B., Li, Z., Liang, P.: A preliminary investigation of self-admitted refactorings
in open source software (s). In: Int.l Conf. on Software Engineering and Knowledge
Engineering, vol. 2018, pp. 165–168. KSI Research Inc. and Knowledge Systems Institute
Graduate School (2018)

15. Di Penta, M., Bavota, G., Zampetti, F.: On the relationship between refactoring actions
and bugs: a differentiated replication. In: Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, pp. 556–567 (2020)

16. Du Bois, B., Demeyer, S., Verelst, J.: Refactoring - improving coupling and cohesion of
existing code. In: 11th Working Conf. on Reverse Engineering, pp. 144–151 (2004)

17. Ferreira, I., Fernandes, E., Cedrim, D., Uchôa, A., Bibiano, A.C., Garcia, A., Correia,
J.a.L., Santos, F., Nunes, G., Barbosa, C., Fonseca, B., de Mello, R.: The buggy side
of code refactoring: Understanding the relationship between refactorings and bugs. In:
Proceedings of the 40th International Conference on Software Engineering: Companion
Proceeedings, ICSE ’18, p. 406–407. ACM, New York, NY, USA (2018). DOI 10.1145/
3183440.3195030

18. Fowler, M.: Refactoring: improving the design of existing code. Addison-Wesley Long-
man Publishing Co., Inc., USA (1999)

19. Freedman, D.A.: Statistical models: theory and practice. Cambridge University Press
(2009)

20. Grano, G., De Iaco, C., Palomba, F., Gall, H.C.: Pizza versus pinsa: On the perception
and measurability of unit test code quality. In: 2020 IEEE Int.l Conf. on Software
Maintenance and Evolution (ICSME), pp. 336–347. IEEE (2020)

21. Guerra, E.M., Fernandes, C.T.: Refactoring test code safely. In: Int.l Conf. on Software
Engineering Advances (ICSEA 2007), pp. 44–44. IEEE, New York, NY, USA (2007)

22. Iannone, E., Codabux, Z., Lenarduzzi, V., De Lucia, A., Palomba, F.: Rubbing salt in the
wound? a large-scale investigation into the effects of refactoring on security. Empirical
Software Engineering 28(4), 89 (2023)

23. Kim, D.J., Chen, T.H.P., Yang, J.: The secret life of test smells-an empirical study
on test smell evolution and maintenance. Empirical Software Engineering 26(5), 1–47
(2021)

24. Kochhar, P.S., Lo, D., Lawall, J., Nagappan, N.: Code coverage and postrelease defects:
A large-scale study on open source projects. IEEE Transactions on Reliability 66(4),
1213–1228 (2017)

25. Kudrjavets, G., Nagappan, N., Ball, T.: Assessing the relationship between software
assertions and faults: An empirical investigation. In: 2006 17th International Symposium
on Software Reliability Engineering, pp. 204–212. IEEE (2006)

26. Kumar Chhabra, J., Gupta, V.: A survey of dynamic software metrics. Journal of
computer science and technology 25, 1016–1029 (2010)

27. Lacerda, G., Petrillo, F., Pimenta, M., Guéhéneuc, Y.G.: Code smells and refactoring:
A tertiary systematic review of challenges and observations. The Journal of Systems
and Software 167, 110610 (2020)

40 Luana Martins et al.

28. Luo, Q., Hariri, F., Eloussi, L., Marinov, D.: An empirical analysis of flaky tests. In:
Proceedings of the 22nd ACM SIGSOFT Int.l Symposium on Foundations of Software
Engineering, pp. 643–653 (2014)

29. Maes-Bermejo, M., Gallego, M., Gortázar, F., Robles, G., Gonzalez-Barahona, J.M.: Re-
visiting the building of past snapshots—a replication and reproduction study. Empirical
Software Engineering 27(3), 65 (2022)

30. Mann, H.B., Whitney, D.R.: On a test of whether one of two random variables is stochas-
tically larger than the other. The annals of mathematical statistics pp. 50–60 (1947)

31. Martins, L., Costa, H., Ribeiro, M., Palomba, F., Machado, I.: Automating test-specific
refactoring mining: A mixed-method investigation. In: Proceedings of the 23rd IEEE
International Working Conference on Source Code Analysis and Manipulation (2023)

32. Martins, L., Pontillo, V., Costa, H., Ferrucci, F., Palomba, F., Machado, I.: Test code
refactoring unveiled: Where and how does it affect test code quality and effectiveness?
arXiv preprint arXiv:2308.09547 (2023)

33. Martins, L., Pontillo, V., Costa, H., Ferrucci, F., Palomba, F., Machado, I.: [Dataset]
Test Code Refactoring Unveiled: Where and How Does It Affect Test Code Quality and
Effectiveness? (2024). DOI https://doi.org/10.6084/m9.figshare.23666736

34. Meszaros, G.: xUnit test patterns: Refactoring test code. Pearson Education (2007)
35. Meszaros, G., Smith, S.M., Andrea, J.: The test automation manifesto. Extreme Pro-

gramming and Agile Methods - XP/Agile Universe 2003, pp. 73–81. Springer Berlin
Heidelberg, Springer, Berlin, Heidelberg (2003)

36. Micco, J.: The state of continuous integration testing@ google (2017)
37. Murphy-Hill, E., Black, A.P.: Why don’t people use refactoring tools? In: Proceedings

of the 1st Workshop on Refactoring Tools, pp. 61–62 (2007)
38. Murphy-Hill, E., Parnin, C., Black, A.P.: How we refactor, and how we know it. IEEE

Transactions on Software Engineering 38(1), 5–18 (2011)
39. Nelder, J.A., Wedderburn, R.W.: Generalized linear models. Journal of the Royal Sta-

tistical Society: Series A (General) 135(3), 370–384 (1972)
40. Oliveira, P., Valente, M.T., Lima, F.P.: Extracting relative thresholds for source code

metrics. In: 2014 Software Evolution Week-IEEE Conference on Software Maintenance,
Reengineering, and Reverse Engineering (CSMR-WCRE), pp. 254–263. IEEE (2014)

41. O’brien, R.M.: A caution regarding rules of thumb for variance inflation factors. Quality
& quantity 41, 673–690 (2007)

42. Papadakis, M., Shin, D., Yoo, S., Bae, D.H.: Are mutation scores correlated with real
fault detection? a large scale empirical study on the relationship between mutants and
real faults. In: Proceedings of the 40th Int.l Conf. on Software Engineering, pp. 537–548
(2018)

43. Pecorelli, F., Di Lillo, G., Palomba, F., De Lucia, A.: Vitrum: A plug-in for the visu-
alization of test-related metrics. In: Proceedings of the Int.l Conf. on Advanced Visual
Interfaces, AVI’20. ACM, New York, NY, USA (2020)

44. Pecorelli, F., Palomba, F., De Lucia, A.: The relation of test-related factors to software
quality: a case study on apache systems. Empirical Software Engineering 26, 1–42
(2021)

45. Peruma, A., Almalki, K., Newman, C.D., Mkaouer, M.W., Ouni, A., Palomba, F.: ts-
detect: an open source test smells detection tool. Symposium on the Foundations of
Software Engineering. ACM (2020)

46. Peruma, A., Newman, C.D., Mkaouer, M.W., Ouni, A., Palomba, F.: An exploratory
study on the refactoring of unit test files in android applications. In: Proceedings of
the 42nd Int.l Conf. on Software Engineering Workshops, ICSEW’20, p. 350–357. ACM,
New York, NY, USA (2020)

47. Ratzinger, J., Sigmund, T., Gall, H.C.: On the relation of refactorings and software
defect prediction. In: Proceedings of the 2008 Int.l working Conf. on MSR, pp. 35–38
(2008)

48. Schweikl, S., Fraser, G., Arcuri, A.: Evosuite at the sbst 2022 tool competition. In:
Proceedings of the 15th Workshop on Search-Based Software Testing, pp. 33–34 (2022)

49. Shatnawi, R.: Deriving metrics thresholds using log transformation. Journal of Software:
Evolution and Process 27(2), 95–113 (2015)

Test Code Refactoring Unveiled 41

50. Silva, D., Tsantalis, N., Valente, M.T.: Why we refactor? confessions of github con-
tributors. In: Proceedings of the 2016 24th acm sigsoft international symposium on
foundations of software engineering, pp. 858–870 (2016)

51. Soares, E., Ribeiro, M., Amaral, G., Gheyi, R., Fernandes, L., Garcia, A., Fonseca,
B., Santos, A.: Refactoring test smells: A perspective from open-source developers. In:
Proceedings of the 5th Brazilian Symposium on Systematic and Automated Software
Testing, SAST 20, p. 50–59. ACM, New York, NY, USA (2020)

52. Soares, E., Ribeiro, M., Gheyi, R., Amaral, G., Santos, A.M.: Refactoring test smells
with junit 5: Why should developers keep up-to-date. IEEE Transactions on Software
Engineering pp. 1–1 (2022)

53. Sobrinho, E.V.P., De Lucia, A., de Almeida Maia, M.: A systematic literature review
on bad smells–5 w’s: which, when, what, who, where. IEEE Transactions on Software
Engineering 47(1), 17–66 (2018)

54. Spadini, D., Palomba, F., Zaidman, A., Bruntink, M., Bacchelli, A.: On the relation of
test smells to software code quality. In: 2018 IEEE Int.l Conf. on Software Maintenance
and Evolution (ICSME), pp. 1–12. IEEE, New York, NY, USA (2018)

55. Spadini, D., Palomba, F., Zaidman, A., Bruntink, M., Bacchelli, A.: On the relation of
test smells to software code quality. In: 2018 IEEE Int.l Conf. on Software Maintenance
and Evolution (ICSME), pp. 1–12 (2018)

56. Spadini, D., Schvarcbacher, M., Oprescu, A.M., Bruntink, M., Bacchelli, A.: Investigat-
ing severity thresholds for test smells. In: Proceedings of the 17th Int.l Conf. on Mining
Software Repositories, MSR ’20, p. 311–321. ACM, New York, NY, USA (2020)

57. Tsantalis, N., Ketkar, A., Dig, D.: Refactoringminer 2.0. IEEE Transactions on Software
Engineering 48(3), 930–950 (2022)

58. Tufano, M., Palomba, F., Bavota, G., Di Penta, M., Oliveto, R., De Lucia, A., Poshy-
vanyk, D.: There and back again: Can you compile that snapshot? Journal of Software:
Evolution and Process 29(4), e1838 (2017)

59. Tufano, M., Palomba, F., Bavota, G., Oliveto, R., Di Penta, M., De Lucia, A., Poshy-
vanyk, D.: When and why your code starts to smell bad. In: 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering, vol. 1, pp. 403–414. IEEE (2015)

60. Vargha, A., Delaney, H.D.: A critique and improvement of the cl common language effect
size statistics of mcgraw and wong. Journal of Educational and Behavioral Statistics
25(2), 101–132 (2000)

61. Weißgerber, P., Biegel, B., Diehl, S.: Making programmers aware of refactorings. In:
WRT, pp. 58–59 (2007)

62. Weißgerber, P., Diehl, S.: Identifying refactorings from source-code changes. In: 21st
IEEE/ACM international conference on automated software engineering (ASE’06), pp.
231–240. IEEE (2006)

63. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experi-
mentation in software engineering. Springer Science & Business Media (2012)

64. Wu, H., Yin, R., Gao, J., Huang, Z., Huang, H.: To what extent can code quality be
improved by eliminating test smells? In: 2022 Int.l Conf. on Code Quality (ICCQ), pp.
19–26. IEEE, New York, NY, USA (2022)

