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Abstract

Test smells are symptoms of sub-optimal design choices adopted when developing test cases. Previous research has demonstrated
their harmfulness for test code maintainability and e↵ectiveness, showing their impact on test code quality. As such, the quality
of test cases a↵ected by test smells is likely to deviate significantly from the quality of test cases not a↵ected by any smell and
might be classified as anomalies. In this paper, we challenge this observation by experimenting with three anomaly detection
approaches based on machine learning, cluster analysis, and statistics to understand their e↵ectiveness for the detection of four test
smells, i.e., Eager Test, Mystery Guest, Resource Optimism, and Test Redundancy on 66 open-source Java projects. In addition, we
compare our results with state-of-the-art heuristic-based and machine learning-based baselines. Our ultimate goal is not to prove
that anomaly detection methods are better than existing approaches, but to objectively assess their e↵ectiveness in this domain. The
key findings of the study show that the F-Measure of anomaly detectors never exceeds 47%, obtained in the Eager Test detection
using the statistical approach, while the Recall is generally higher for the statistical and clustering approaches. Nevertheless, the
anomaly detection approaches have a higher Recall than the heuristic and machine learning-based techniques for all test smells.
The low F-Measure values we observed for anomaly detectors provide valuable insights into the current limitations of anomaly
detection in this context. We conclude our study by elaborating on and discussing the reasons behind these negative results through
qualitative investigations. Our analysis shows that the detection of test smells could depend on the approach exploited, suggesting
the feasibility of developing a meta-approach.

Keywords: Test Smells, Anomaly Detection, Empirical Software Engineering.

1. Introduction

In the ever-evolving landscape of software development,
maintaining high code quality standards is paramount. Despite
this, developers introduce defects or flaws during development
or evolutionary activities [1]. However, one crucial aspect of
software maintenance and evolution is the early detection and
resolution of anomalies within the software. Anomalies, in the
context of software development, are deviations from expected
or normative behavior [2]. These deviations can manifest as
code defects [3–5], security vulnerabilities [6, 7], or, as we ex-
plore in this study, test smells.

Test smells are symptoms of poor design or implementation
choices in test code [8]. Several studies have shown the negative
e↵ects of test smells on test code maintainability and e↵ective-
ness [9–13], by showing evidence of the risks associated with
the presence of test smells for software dependability and test
code quality. As a result, researchers have been investigating
methods and tools to detect test smells automatically [14–16].
Most of these tools employ heuristic- or rule-based approaches
that rely on predefined thresholds to distinguish between non-

smelly and smelly test cases [17]. However, these thresholds
can be subjective, a↵ecting both the detection capabilities and
the trust of developers in using the tools [18]. The limitations of
heuristic approaches do not arise from a fundamental inability
to detect test smells, but rather from the way these heuristics are
defined and implemented. In their current state, the predefined
rules and thresholds may not be flexible or precise enough to
capture the full spectrum of test smells, leading to challenges
that reduce the overall e↵ectiveness of these methods.

To overcome the limitation of having thresholds, recent stud-
ies explored machine learning-based methods for test smell de-
tection [19–21]. In addition, prior studies have provided em-
pirical evidence that test smells impact the quality of a test
suite [11, 22]. Consequently, we hypothesize that the quality
of test cases a↵ected by test smells significantly deviates from
the quality of test cases not a↵ected by any smell, allowing us
to consider test smells as either collective or point anomalies.

This paper builds on this hypothesis by exploring the use of
anomaly detection techniques to identify test smells. Specifi-
cally, anomaly detection focuses on identifying deviations from
established norms, aiming to uncover patterns that di↵er signif-
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icantly from the norm. Given the prior evidence on test smells
[11, 22], we argue that test cases impacted by test smells ex-
hibit notable deviations in quality, providing a strong justifi-
cation for applying anomaly detection in this context. These
techniques represent a compelling alternative to traditional su-
pervised machine learning models because they do not require
extensive training, thus avoiding the risk of learning from un-
balanced datasets [5, 23].

Hence, this paper presents an empirical investigation into the
e↵ectiveness of anomaly detection techniques for identifying
four test smells across 66 open-source Java projects: Eager Test,
Mystery Guest, Resource Optimism, and Test Redundancy. Our
goal is to investigate how well anomaly detection methods per-
form when applied to the specific task of test smell detection, as
opposed to demonstrating their superiority with respect to exist-
ing approaches. In other terms, our intention is not to prove that
these methods are better than others but to objectively assess
their e↵ectiveness in this domain. To this aim, we first evalu-
ate the performance of three di↵erent anomaly detection tech-
niques, i.e., machine learning-based, cluster algorithm-based,
and statistical-based approaches. Then, we compare these ap-
proaches against state-of-the-art test smell detectors that use
heuristics and machine learning models.

The results of our study reveal several key findings. First, we
observe that, in a cross-project scenario, the three approaches
for anomaly detection do not perform well in detecting any of
the four test smells, as no technique achieved an F-Measure
higher than 47%. Moreover, the anomaly detection approaches
did perform better than the state-of-the-art baselines, espe-
cially regarding Recall. An additional overlap analysis indi-
cates that test smells detection may depend on the specific ap-
proach used, suggesting the potential for developing a meta-
approach. Lastly, our qualitative investigation identifies areas
for refinement, which could lead to the development of more
e↵ective heuristics or meta-approaches in the future.

All in all, our study is the first to investigate test smells from
the perspective of code anomalies. This novel approach intro-
duces a new viewpoint to the field and lays the groundwork
for future research, regardless of whether the results are pos-
itive or negative. Even though the performance metrics were
lower than expected, we are confident that our findings provide
valuable insights into the challenges of using anomaly detection
for test smell detection. These insights can guide future stud-
ies and contribute to the refinement and improvement of both
anomaly detection techniques and test smell detection method-
ologies, further advancing research in this area.

To sum up, this paper provides the following contributions:

1. An empirical investigation into the capabilities of anomaly
detection techniques for test smell detection;

2. A set of insights to better contextualize our results and de-
lineate future research direction on the matter;

3. An online appendix [24] providing all data and scripts used
to conduct our study that the research community can use
to replicate and build upon our empirical study.

Structure of the paper. Section 2 covers background and re-
lated work. Section 3 presents the research questions, followed
by data collection and analysis methods in Section 4. Findings
are discussed in Section 5, with implications in Section 6. Sec-
tion 7 addresses threats to validity, and Section 8 concludes the
paper and outlines future research directions.

2. Background and Related Work

This section provides background information and references
to related work on anomaly detection and test smells, finally
discussing how test smells can be classified as anomalies.

2.1. Anomaly Detection
Anomaly detection is the process of identifying uncommon

data instances that raise suspicions due to their substantial de-
viation from the majority of the data [2]. Anomaly detection
finds extensive use in a wide variety of applications such as
fraud detection for credit cards [25], disease diagnosis [26, 27],
intrusion detection for cyber-security [6, 7], fault detection in
software systems [3–5].

A straightforward anomaly detection approach is to define a
region that encapsulates normal behavior and classify any data
point outside of this region as an anomaly [2]. However, this ap-
proach becomes challenging given various factors, such as the
nature of the input data, the notion of normal behavior for dif-
ferent application domains, and the availability of labeled data
that might contain noise similar to the actual anomalies [2, 7].

According to Chandola et al. [2], the starting point for the
formulation of the detection anomaly is the understanding of
the nature of the data input. The data input is a collection of
data instances, and each data instance might consist of only one
attribute (univariate) or multiple attributes (multivariate) of dif-
ferent types (binary, categorical, or continuous). Another key
point is the nature of the anomaly. A point anomaly is a partic-
ular data instance that deviates from the normal pattern of the
dataset. A contextual anomaly has been most commonly ex-
plored in time-series data, being classified as a data instance
that behaves anomalously in a particular context. A collec-
tive anomaly is a collection of similar data instances that be-
have anomalously with respect to the entire dataset, i.e., the
co-occurrence of data instances is an anomaly.

Another key point is the association of labels to the data input
to denote whether that instance is normal or anomalous. Based
on the extent to which the labels are available, three anomaly
detection techniques can be applied. Supervised anomaly de-
tection requires training the dataset that has labeled instances
for normal and anomaly classes. Semi-supervised anomaly de-
tection assumes that the training data has labeled instances only
for the normal class. Unsupervised Anomaly Detection creates
groups of data based on density or distance thresholds instead
of labeled data. Due to limited access to anomalous data, con-
structing an anomaly detector is often conducted under semi- or
unsupervised techniques [2, 28, 29].

Lastly, the anomaly detection techniques produce either bi-
nary or score-based outputs. The former classifies the data in-
stances in a binary fashion, i.e., either anomalous or normal.
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The latter assigns a score to each data instance, which is used
as a threshold to select which of them are anomalies [2, 28, 29].

2.2. Test Smells
Test smells are symptoms of poor design or implementation

choices in test code [8]. Several studies have investigated the
negative e↵ects associated with the existence of test smells in
the test suites. Bavota et al. [9, 10] performed two key empirical
studies to investigate the di↵usion and e↵ects of test smells on
software maintenance. Palomba et al. [30] analyzed the di↵u-
sion of test smells on automatically generated test suites. Spa-
dini et al. [11] focused on how bad practices a↵ect test code
quality, investigating ten open-source projects to find a relation
between six test smells and the change and defect-proneness of
both test and production code. Peruma et al. [31] performed
an empirical study on the distribution and survivability of test
smells. Martins et al. [32] conducted an empirical study to in-
vestigate the di↵usion of test smells and their relationship with
structural metrics. Those consistently support each other’s find-
ings, demonstrating that test smells are highly di↵used in test
classes, and their presence can reduce test code comprehension
compared to the absence of test smells.

On that account, researchers have dedicated e↵orts to pro-
pose methods and automated tools to detect test smells [14–
16]. Aljedaani et al. [17] listed 22 peer-reviewed tools for de-
tecting 66 test smells. Most tools rely on rules and metrics-
based approaches to detect test smells in test codes written with
the JUnit framework. Some tools focus on a specific cate-
gory of test smells, such as redundant tests (TeReDetect [14]
and TeCReVis [33]), dependent tests (DTDetector [34], Elec-
tricTest [35], TEDD [36], PraDeT [37], and PolDet [38]), and
test fixtures (TestHound [39] and TestEvoHound [40]). Other
tools focus on di↵erent categories of test smells that a↵ect dif-
ferent parts of the test code (OraclePolish [41], Taste [42],
tsDetect [15], JNose Test [16]). In addition, there are tools for
the detection of test smells and calculation of test code metrics
(VITRuM [43] and JTDog [44]). Yang et al. [45] investigated
new test smell types from software practitioners’ discussions
and developed a new tool to detect them.

Complementary, there are some approaches based on ma-
chine learning to detect test smells. Pontillo et al. [21] proposed
a test smell detection approach based on machine learning to
detect four test smells using textual and structural metrics. Mar-
tins et al. [19] used structural metrics of test code to train ma-
chine learning algorithms for classifying four test smells. Hadj-
Kacem and Bouassida [20] have analyzed the agreement level
among the detection tools and suggested a multi-label classifi-
cation approach to detect test smells.

3. Research Question and Variables

The goal of the empirical study was to evaluate the per-
formance of three di↵erent anomaly detection approaches,
i.e., machine learning-based, cluster algorithm-based, and
statistical-based approaches, when employed for test smell
detection, with the purpose of understanding how these ap-
proaches work and how they compare to baseline techniques

Table 1: Definition of the test smells included in our study.

Test Smell Definition
Eager Test A test method involving many methods of the object be-

ing tested.
Mystery Guest A test that uses external resources (e.g., databases or

files).
Resource Optimism A test that uses external resources without checking the

state of these.
Test Redundancy A test that could be removed without impacting the test

suite.

based on heuristics and machine learning. The perspective is
from both researchers and practitioners: the former are inter-
ested in assessing the feasibility of using anomaly detection for
test smell prediction; the latter are interested in evaluating the
feasibility of using those methods within their contexts. Specif-
ically, as first step, we applied various anomaly detection ap-
proaches for identifying four specific test smells within soft-
ware projects and evaluated the resulting performance:

RQ1

To what extent can anomaly detection detect test smells?

Since we analyzed three di↵erent anomaly detection ap-
proaches that can impact on test smell detection di↵erently, we
considered three sub-research questions:

RQ1.1. To what extent can machine learning-based anomaly
detection detect test smells?

RQ1.2. To what extent can cluster algorithm-based anomaly
detection detect test smells?

RQ1.3. To what extent can statistical-based anomaly detec-
tion detect test smells?

Upon assessing the performances of anomaly detection
methods, we compared them against state-of-the-art baseline
approaches based on heuristics and machine learning. Hence,
we formulated our second research question:

RQ2

How do anomaly detection perform compared to
heuristic- and machine learning-based approaches?

Figure 1 overviews the empirical study setting, which con-
sisted of three main steps: (1) Context Selection, (2) Detection
of test smells using anomaly detection approaches - RQ1, (3)
Detection of test smells detection using the baseline techniques
- RQ2, and (4) Data analysis - RQ1 and RQ2. To design and
report our empirical study, we followed the empirical software
engineering guidelines by Wohlin et al. [46] and the ACM/SIG-
SOFT Empirical Standards.1

1Available at https://github.com/acmsigsoft/
EmpiricalStandards.
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Figure 1: Overview of the research method employed.

3.1. Context Selection
The context of our study consisted of a dataset previously

collected [21] by analyzing and manually validating test cases
from 66 open-source Java projects. This dataset contains infor-
mation on test smells whose detection is based on at least two
metrics to enable the experimentation with machine learning-
based anomaly detection approaches (to answer to RQ1.1), and
their detection is supported by at least one tool to address RQ2.
The availability of a manually validated dataset enabled us to
perform a more precise evaluation of the approaches without
the potential biases introduced by automatically generated data.
More particularly, the dataset collects 9,633 test cases. For
each test case, the dataset provides manually-validated infor-
mation regarding the presence of four di↵erent test smells: Ea-
ger Test, Mystery Guest, Resource Optimism, and Test Redun-
dancy. Table 1 reports the definition of these test smells. The
total number of smelly test cases is 3,652, which represents
37.9% of the total test cases. The number of smelly test cases
does not coincide with the sum of instances across all four test
smell types: indeed, a single test case can be a↵ected by mul-
tiple test smell instances. This is the case with the dataset ex-
ploited. Looking at the distribution of the individual test smell
types, we have 2,699 Eager Test instances (28%), 1,534 Mys-
tery Guest instances (15%), 730 Resource Optimism instances
(7%), and 40 Test Redundancy instances (0.4%). As a con-
sequence, each smelly test case presents an average of 1.37
test smell instances - considering the total number of individ-
ual instances (2699+1534+730+40=5,003) over the number of
smelly test cases (3,652).

It is also important to remark that our study examines each
test smell individually: we indeed addressed anomaly detec-
tion methods and baselines specifically for detecting instances
of Eager Test, Mystery Guest, Resource Optimism, and Test
Redundancy. As a consequence, we split the problem of test
smell detection into four sub-problems for which the amount
of smelly instances is much lower than the global number of
test smell instances (Eager Test=28%; Mystery Guest=15%;
Resource Optimism=7%; Test Redundancy=0.4%).

When considering this perspective, the adoption of anomaly
detection methods starts being justified. In addition, it is also
worth pointing out that the scope of anomaly detection is cen-
tered on identifying deviations from normality, which are not
necessarily related to the frequency of occurrences. Indeed,
anomaly detection aims to uncover patterns that di↵er signifi-
cantly from the norm, regardless of how often they appear. Our
work stems from this foundational principle. Based on previous
studies on test smells [11, 22], we hypothesize that the quality
of test cases a↵ected by test smells significantly deviates from
the quality of test cases not a↵ected by any smell, thereby jus-
tifying the use of anomaly detection methods.

This dataset represents the largest, most recent, and manu-
ally validated set of test smell instances available in the litera-
ture. The dataset includes projects with di↵erent characteristics,
hence allowing us to feature a study of a pretty diverse set of
software systems. To provide more demographic information
on the dataset, we further analyzed the scope of the projects,
mining the descriptions of the projects from the readme files of
the corresponding repositories. In addition, we computed met-
rics that may provide insights into their diversity: in particular,
we computed the number of stars, forks, open issues, and the
number of lines of code. In terms of scope, we observed that
the considered projects vary very much, e.g., some projects re-
late to HTTP requests and responses, others to container orches-
tration or web frameworks. The number of stars varies between
61 and 62,255, with a median value of 404. In terms of size, the
smallest project has 105 lines of code, while the biggest project
has 575,872. The median value is 57,719. Finally, the median
values for the number of forks and open issues are 1,875 and
103, respectively —a full report of the domains of the consid-
ered projects is available in our online appendix [24].

3.2. Dependent Variable
The dependent variable of our study is the presence or ab-

sence of each test smell type. Thus, we experimented with the
anomaly detection approaches for Eager Test, Mystery Guest,
Resource Optimism, and Test Redundancy independently.
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3.3. Independent Variable

To collect a set of reliable independent variables for each test
smell under consideration, we first used the structural and tex-
tual metrics employed by state-of-the-art heuristic-based and
machine learning-based approaches. These metrics were al-
ready available in the literature and used in several detection ap-
proaches [15, 47–49], hence representing a valid starting point
for characterizing the smelliness of test code. In particular, for
Eager Test, we analyzed the number of multiple calls made by a
test method to multiple production methods and the test method
cohesion of each test case. For Mystery Guest, we analyzed
whether the test case contains instances of external resources,
i.e., a file. The third, i.e., Resource Optimism, was identified
by analyzing whether a test method used an external resource
without checking its state. Finally, we used as independent vari-
ables for detecting Test Redundancy the code coverage to ana-
lyze whether two tests cover similar paths.

In an e↵ort to characterize test code quality from alternative
perspectives, we also complemented the state-of-the-art metrics
with two further categories of test metrics proposed in previous
research on test code quality [50–52]. Specifically:

Test code size and complexity. We computed the number of
lines of test code. This is a well-established proxy metric for
complexity [53] and may estimate the quality of test cases
from the perspective of maintainability [54]. Secondly, we
computed the McCabe cyclomatic complexity of test code
[55], which estimates the logical complexity of tests that, in
turn, can a↵ect the likelihood of the emergence of test smells.

Test readability. According to previous studies, readability
represents a key aspect for assessing test code quality [56],
and it is associated with an increasing amount of test smells
[57]. We exploited these findings and enlarged the set of met-
rics considered with those coming from the paper by Scal-
abrino et al. [50]. In particular, it proposed a comprehen-
sive set of 67 readability metrics that encompass multiple as-
pects, including comment readability, expression complexity,
method chains, semantic coherence, etc. This metric suite (1)
integrates and enlarges the metrics originally defined within
the seminal studies on code readability by Buse and Weimer
[58], and Dorn [59] and (2) has been assessed in the context
of studies on test code quality assessment [13, 57].

On the one hand, the addition of these two categories of met-
rics may have potentially enhanced the overall detection capa-
bilities of anomaly detection methods. On the other hand, as-
sessing the role of these metrics may possibly o↵er new, valu-
able insights into the improvement of existing test smell detec-
tors. Metrics related to test code size, complexity, and readabil-
ity were computed for all the test smells considered, thus com-
plementing the specific set of metrics tailored to the individual
test smells. Overall, our study featured a set of 71 metrics. Our
online appendix [24] reports information on all the definitions
of the metrics computed in the study.

4. Research Method

This section discusses the research methods employed to ad-
dress the research questions targeted by our work.

4.1. Data Preparation

Before building the experimented anomaly detectors, we per-
formed data exploration and quality checks, ensuring the suit-
ability of the data for our analysis. In particular, we examined
the skewness of the data [60], verified the presence of miss-
ing values, and normalized the data using a standard scaling.
In such a context, the data scaling is useful to (i) ensure that
each feature contributes equally to the analysis, (ii) potentially
improve the ability to detect anomalies, and (iii) facilitate the
interpretation of the results.

As an exemplary case, Table 2 reports the values obtained
when computing the skewness of the test smell-specific met-
rics, i.e., those employed by state-of-the-art heuristic-based ap-
proaches. For the sake of readability, we report the skewness
of all the remaining metrics as part of the online appendix [24].
We can observe that all metrics except one, i.e., Test Method
Cohesion, present high positive skewness with values signif-
icantly di↵erent from zero. This result suggests that data do
not follow a symmetric distribution by indicating the presence
of outliers and further reinforces our assumption about consid-
ering test smells as anomalies. Similar results were observed
when considering the test code, complexity, and readability
metrics, hence confirming that the dataset actually presents
anomalies that may be captured by anomaly detection methods.

Table 2: The skewness for each independent variable of our empirical study.

Test Smell Metric Value
Eager Test NMC 4.06

TMC -0.13
Mystery Guest NRDB 11.03

NRF 7.69
Resource Optimism ERNC 10.92

FRNC 9.03
Test Redundancy PR 7.23

SR 8.22

4.2. RQ1.1: Research Method

The first step of the analysis was the definition of the ma-
chine learning-based anomaly detection methods. We fo-
cused on three models, i.e., OneClassSVM, IsolationForest, and
LocalOutlierFactor. We selected these algorithms for two rea-
sons: first, each model is based on a di↵erent class of al-
gorithms, allowing us to provide a wider overview of how
anomaly detection can be applied to test smell detection. Then,
according to Chandola et al. [2], these methods are the most
stable and reliable, other than being commonly used in multi-
ple environments [4, 5, 61, 62]. Particularly, the three methods
are defined as follows:
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OneClassSVM (OCSVM) [63]. This algorithm is based on
the Support Vector Machine (SVM). Similarly, the algorithm
defines a frontier that delimits the initial observations. The
future observations will either fall in the frontier, therefore
belonging to the same class as the original data (normal),
or they will fall outside the frontier, therefore classifying as
anomalous data.

IsolationForest (IF) [64]. This is an ensemble technique
based on the Extremely Randomized Tree model [65], which
randomly selects a feature and a split value between the max-
imum and minimum of the selected feature. The number of
splits required to isolate a sample equals the path length from
the root to the final node of a tree. Since random partition-
ing produces noticeably shorter paths for anomalies, when a
forest of random trees produces shorter paths for particular
samples, these are highly likely to be anomalies.

LocalOutlierFactor (LOF) [66]. The algorithm computes the
local density of a sample compared to its neighbors. The den-
sity of an observation is given by the ratio of the average local
density of its k-nearest neighbors and its own local density. If
the density is di↵erent from that of its neighbors, the analyzed
sample is an outlier; otherwise, it is considered normal.

It is important to emphasize that these algorithms are specif-
ically designed to handle imbalanced datasets because they op-
erate under the assumption that anomalous data points are much
fewer compared to normal data points. Therefore, traditional
data resampling techniques like SMOTE, which are commonly
used in supervised learning scenarios to address class imbal-
ance, are not applicable in the context of anomaly detection-
based machine learning methods. In fact, applying such resam-
pling techniques could introduce bias by artificially altering the
distribution of the dataset, potentially compromising the accu-
racy and reliability of the anomaly detection performance.

We experimented with the hyper-parameters of the classi-
fiers using the Random Search strategy [67] that randomly sam-
ples the hyper-parameters space to find the best combination
of hyper-parameters maximizing a scoring metric (i.e., the F-
Measure). The models were implemented using the scikit-
learn library [68]—more details on the implementation and
the hyperparameters are reported in our online appendix [24].
To evaluate the performance of the machine learning-based
anomaly detection approaches, we computed several state-of-
the-art metrics such as Precision, Recall, F-Measure [69], and
Matthews Correlation Coe�cient (MCC) [70].

4.3. RQ1.2: Research Method

Chandola et al. [2] defined two categories of clustering-based
anomaly detection approaches. The first starts from the assump-
tion that normal data instances belong to a cluster in the data,
while anomalies do not belong to any cluster. The second as-
sumes that normal data instances lie close to their closest cluster
centroid, while anomalies are far away from their closest cluster
centroid. We analyzed one algorithm for each category:

DBSCAN. The Density-Based Spatial Clustering of Applica-
tions with Noise (DBSCAN), proposed by Ester et al. [71],
works by grouping data that are close to each other. The al-
gorithm requires two parameters, i.e., the radius (✏) and the
minimum number of points to define a dense region (min-
sample). The algorithm works as follows: first, it chooses
a random data point that has not been analyzed yet. Then, the
algorithm returns all data within a distance ✏ from the chosen
point. If at least min-sample points are within the ✏ distance,
the algorithm creates a new cluster and adds all the points.
Alternatively, the algorithm marks the chosen point as noise
if there are less than min-sample points within the ✏ distance.

K-means. This is a centroid-based clustering algorithm [72]
that computes the distance between each data point and a
centroid to assign it to a cluster. The K-means algorithm
aims to identify the K number of groups in the dataset. K-
means strives to minimize the within-cluster sum of squares
(WCSS), which represents the sum of squared distances be-
tween data points and their respective cluster centroids. K-
means aims to find K clusters, each with its centroid and as-
signs each data point to the cluster with the closest centroid.
To determine the optimal value of K, we employed the elbow
methods, i.e., a technique that involves the algorithm with
di↵erent values of K and plotting the corresponding WCSS
for each K. The plot exhibits a decreasing trend in WCSS as
K increases, with the rate of decrease in WCCS slowing as
K grows. The ”elbow point” on the plot, where the WCSS
reduction starts to slow down significantly, is often consid-
ered the optimal K value. In addition, we applied a threshold
based on the standard deviation of the WCSS values. By cal-
culating the standard deviation for the WCSS values across
di↵erent K values, we identified a threshold beyond which
K does not significantly impact the clustering quality. This
threshold helps in avoiding overfitting the number of clusters.

Finally, to evaluate the performance of the clustering-based
anomaly detection approaches, we computed several state-of-
the-art metrics such as precision, recall, F-Measure [69], and
Matthews Correlation Coe�cient (MCC) [70].

4.4. RQ1.3: Research Method
Concerning the research method applied to answer to RQ1.3,

we decided to apply the boxplot rule as statistical technique to
detect the anomalies in our data. A boxplot provides a visual
representation of data by highlighting key summary statistics,
including the smallest non-anomalous observation (min), the
lower quartile (Q1), the median, the upper quartile (Q3), and
the largest non-anomalous observation, (max). The di↵erence
between Q3 and Q1 is referred to as the Interquartile Range
(IQR). The boxplot also specifies the thresholds beyond which
any data point is considered an anomaly. An instance that lies
more than 1.5*IQR lower than Q1 or 1.5*IQR higher than Q3
is declared as an anomaly.

Finally, after applying the statistical-based anomaly detec-
tion approach in a cross-project scenario, we computed preci-
sion, recall, F-Measure [69], and MCC [70].
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4.5. RQ2: Research Method

After addressing the performance of multiple anomaly detec-
tion methods in the task of test smell detection, we compared
them against state-of-the-art baseline approaches in an e↵ort
to understand the strengths and weaknesses of anomaly detec-
tion in comparison to alternative detectors. More particularly,
we identified two categories of baselines. In the first place, we
experimented with heuristic-based detectors: these approaches
make use of code metrics and predefined thresholds to discrim-
inate the smelliness of test code. In the second place, we ex-
ploited canonical machine learning models: these approaches
leverage labeled datasets to train algorithms that can learn to
identify test smells by recognizing complex patterns and rela-
tionships within the training data.

As for the heuristic-based detectors, we selected three ap-
proaches proposed in previous work. Specifically:

tsDetect [15]. We selected this tool as it represents the current
state of the art in test smell detection [17]. This tool is able
to detect three of the test smells included in our study, i.e.,
Eager Test, Mystery Guest, and Resource Optimism. In par-
ticular, the first is detected by computing the number of the
multiple calls made by a test method to multiple production
methods. The second is identified by analyzing whether a
test method contains instances of files and database classes.
Finally, the third is identified by looking at whether a test
method utilizes a File instance without calling the method
exists(), isFile(), or notExist(). The detection rules
previously described are inspired by the original definition of
the smells provided by Van Deursen et al. [8]. Other avail-
able tools, such as JNose Test [16] and TestQ [73], employ
exactly the same detection mechanism, hence selecting Ts-
Detect ensured that we covered the essential detection rules
shared by multiple widely recognized tools.

TeReDetect [14]. We selected this tool as it is the only one,
along with TeCReVis [33], to detect instances of the Test Re-
dundancy smell. The tool detects the smell by computing
code coverage and analyzing whether two tests cover similar
paths. While both tools implement the same detection rules,
TeCReVis presents the results through a user interface [17].

Darts [48]. The tool relies on the detection rule proposed in
TASTE by Palomba et al. [42]. These tools di↵er from
the previous ones as they do not rely on traditional code
metrics but instead implement heuristics based on textual
similarity metrics. Specifically, they detect Eager Test in-
stances through a two-step process: first, the test method calls
are replaced with the actual production code methods called
by the test method; then, the conceptual cohesion metric is
computed, taking into account the constituent methods and,
whether this metric exceeds 0.5 the smell is detected. Among
these, we selected DARTS, as it is the actual implementation
of the TASTE approach and thus provided a concrete tool.

These baselines were selected based on (1) their capabilities
to detect the test smells considered in our work; and (2) their

demonstrated detection performance, which was shown to be
su�ciently high in the original research papers that introduced
them. By selecting these well-established baselines, we were
able to comprehensively evaluate the e↵ectiveness of anomaly
detection methods in comparison to the current state-of-the-art
heuristic-based approaches for test smell detection.

As for the machine learning-based detectors, the selection
process exploited recent findings in the field. Drawing from
previous work in the area [21], which comprehensively eval-
uated the performance of supervised machine learning models
for test smell detection against the same dataset as our study,
we selected the best-performing machine learning model for
each test smell considered. In particular, the previous study
[21] trained and evaluated six supervised machine learning al-
gorithms in both within- and cross-project scenarios for the
four test smells under analysis. The results indicated that, for
the cross-project scenario, the best machine learning model for
Eager Test detection is AdaBoost with NearMiss2 as the bal-
ancing technique; for Mystery Guest detection is Random For-
est with NearMiss1; for Resource Optimism detection is Sup-
port Vector Machines with random undersampling; and for
Test Redundancy detection is Naive Bayes with no balancing.
These four models served as additional baselines, allowing us
to compare their performance against both anomaly detection
and heuristic-based approaches.

It is important to emphasize that none of the heuristic-based
detectors required additional configuration. They were exe-
cuted directly on the source code without the need for parameter
adjustments, ensuring the use of their original implementations
and avoiding any potential bias from incorrect configurations.
Similarly, for the machine learning models, we followed the
same configuration pipeline as in the prior study [21].

To enable the comparison, we employed the same evaluation
metrics used to assess the anomaly detection approaches, i.e.,
precision, recall, F-Measure, and MCC.

4.6. RQ1-RQ2: Statistical Analysis
In addressing both research questions of the study, we con-

ducted a statistical analysis of the results to determine whether
the observed performance di↵erences among the experimented
approaches were statistically significant. This analysis aimed to
validate the reliability and robustness of the findings.

More specifically, the statistical analysis was implemented
by combining the application of the Friedman [74] and Ne-
menyi [75] tests. The Friedman test is a non-parametric test
used to detect di↵erences in treatments across multiple test at-
tempts, which is particularly useful when the assumptions of
normality are not met. The Nemenyi test is a post-hoc analy-
sis performed after the Friedman test to identify which groups
di↵er from each other. The statistical tests were selected based
on the analysis of our data assumptions. Specifically, we ver-
ified normality with the Shapiro-Wilk test [76] and found that
the data was not normally distributed (p-value<0.05). As such,
we opted for the Friedman test [74], ensuring a random sam-
ple from each group, with at least three di↵erent observations
per group, and a continuous dependent variable. For multiple
testing corrections, we applied the Nemenyi post-hoc test [75],
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which adjusts for multiple comparisons and controls the family-
wise error rate. In the context of RQ1, the tests were applied to
determine if there were any statistically significant di↵erences
in the F-Measure scores of the six anomaly detection methods
experimented with. For RQ2, the tests were applied to verify
the di↵erences between the F-Measure scores achieved by the
anomaly detection methods and baseline approaches.

5. Analysis of the Results

This section provides an overview of the results for each re-
search question and sub-research question.

5.1. Machine Learning-based Anomaly Detection

In the context of RQ1.1, we aimed to assess the performance
of machine learning-based anomaly detection methods for test
smell detection. Figure 2 depicts boxplots reporting the dis-
tribution of the F-Measure obtained by the experimented tech-
niques over the considered test smells. We can observe that for
all test smells, the performance is low, i.e., the median is zero
or close to zero for all models. For this reason, the machine
learning-based anomaly detection method does not seem useful
for test smell detection.
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Figure 2: Boxplot representing the F-Measure values obtained by classifiers for
all considered test smells.

Concerning the other performance metrics, Tables 3, 4, and 5
present the performance results respectively for Isolation For-
est, Local Outlier Factor, and One-Class SVM. We can observe
that the performances are generally low when the algorithms are
run without hyper-parameter optimization, with the MCC rang-
ing from -30% to 1%. Furthermore, regarding the F-Measure,
the values span from 0% to 34% with the lowest value observed
for Test Redundancy and the highest for Eager Test, thus con-
firming the previous analysis based on boxplots. As for Preci-
sion, the performance varies from 0% to 18%, while the highest
Recall is 75% for Test Redundancy.

Overall, we found that the hyper-parameter optimization did
not improve the performance as much as to justify the high
computational cost required.

5.2. Cluster algorithm-based Anomaly Detection
In the context of RQ1.2, we aimed to assess the performance

of cluster algorithm-based anomaly detection methods for test
smell detection. Figure 3 shows the distribution of metrics val-
ues in clusters for all test smells using DBSCAN. Cluster -1
(royal blue) indicates data points that do not belong to any of
the identified clusters and, therefore, are considered anomalies.

The DBSCAN algorithm generated 12 clusters for Eager
Test, 19 for Mystery Guest, 16 for Resource Optimism, and
seven for Test Redundancy. With respect to Eager Test, as the
NMC (Number of Methods Call) values increase, the dispersion
of TMC (Test Method Cohesion) values tends to decrease. On
the one hand, Cluster 0 and Cluster 13 have test methods with
one call for production methods (NMC = 1) and high cohesion
values (TMC has x = 0.82 for Cluster 0 and x = 0.98 for Clus-
ter 13). The di↵erence between the clusters lies in the Dorn
metrics; most are higher in Cluster 13. On the other hand, the
test methods in other clusters have 0 calls for production meth-
ods (NMC = 0) and groups them by cohesion range; Cluster
5 has the lowest cohesion (T MC = 0), and Cluster 8 has the
highest cohesion values (x = 0.08, � = 0.01). With respect
to Mystery Guest, test methods with no references to external
files nor references to databases (NRF = 0 and NRDB = 0)
are grouped according to the number of lines and complexity
into Clusters 0 to 16. For example, Cluster 7 has more lines
(tloc = 7) and less complexity (tmcCabe = 1) than the oth-
ers. Similar reasoning are applied to the Resource Optimism.
Finally, for Test Redundancy, most clusters have no pair redun-
dancy (PR = 0.0) nor suite redundancy (PR = 0.0). Di↵erently,
Cluster 2 has pair redundancy (x = 0.02 and � = 0.0), Cluster
4 has suite redundancy (x = 0.03, and � = 0.02), and Cluster
12 has both pair redundancy (x = 0.81, and � = 0.0) and suite
redundancy (x = 0.0, and � = 0.16).

In terms of performance, Table 6 reports the confusion matrix
other than the performance metrics. We can observe that the F-
Measure ranges between 0% to 43% (the highest value is for
Eager Test). The highest MCC reached is 2% for the Resource
Optimism detection. Finally, the Precision is low (the highest
value is 27% for Eager Test), while the Recall is high for all test
smells, ranging between 95% and 100%.

Turning our attention to the K-means algorithm, Figure 4
shows the distribution of metrics values in two clusters for all
test smells, i.e., the optimal value of K according to the elbow
method. Cluster 1 (pastel lavender) indicates data points con-
sidered as anomalies.

With respect to Eager Test, Cluster 0 has lower median val-
ues for NMC than Cluster 1 (x = 1.18, and x = 1.99) and
higher median values for TMC than Cluster 1 (x = 0.21, and
x = 0.17). For Mystery Guest, Cluster 0 has lower median val-
ues for NRDB (x = 0.18, and x = 0.75) and NRF (x = 0.54, and
x = 3.34) than Cluster 1. Di↵erently, for Resource Optimism,
Cluster 0 has higher median values for ERNC (x = 0.18, and
x = 0.75) and FRNC (x = 0.74, and x = 2.49) than Cluster 1.

9



Table 3: Aggregate results for Isolation Forest in terms of Precision, Recall, Accuracy, F-Measure, and MCC without (i.e., “w/o HT”) and with (i.e., “w/ HT”) the
hyper-parameter optimization by Random Search.

Precision Recall Accuracy F-Measure MCC
Test Smell w/o HT w/ HT w/o HT w/ HT w/o HT w/ HT w/o HT w/ HT w/o HT w/ HT

Eager Test 0.18 0.25 0.43 0.83 0.30 0.26 0.25 0.38 -0.30 -0.19
Mystery Guest 0.14 0.15 0.60 0.87 0.36 0.19 0.23 0.25 -0.06 -0.08
Resource Optimism 0.07 0.07 0.61 0.88 0.35 0.14 0.12 0.13 -0.03 -0.03
Test Redundancy 0.004 0.004 0.75 0.92 0.33 0.10 0.01 0.01 0.01 0.005

Table 4: Aggregate results for Local Outlier Factor in terms of Precision, Recall, Accuracy, F-Measure, and MCC without (i.e., “w/o HT”) and with (i.e., “w/ HT”)
the hyper-parameter optimization by Random Search.

Precision Recall Accuracy F-Measure MCC
Test Smell w/o HT w/ HT w/o HT w/ HT w/o HT w/ HT w/o HT w/ HT w/o HT w/ HT

Eager Test 0.25 0.25 0.54 0.54 0.43 0.43 0.34 0.34 -0.07 -0.07
Mystery Guest 0.15 0.15 0.56 0.56 0.42 0.42 0.23 0.23 -0.03 -0.03
Resource Optimism 0.07 0.07 0.56 0.56 0.41 0.40 0.12 0.12 -0.02 -0.02
Test Redundancy 0.004 0.005 0.70 0.70 0.40 0.40 0.01 0.01 0.01 0.01

Table 5: Aggregate results for OCSVM in terms of Precision, Recall, Accuracy, F-Measure, and MCC without (i.e., “w/o HT”) and with (i.e., “w/ HT”) the hyper-
parameter optimization by Random Search.

Precision Recall Accuracy F-Measure MCC
Test Smell w/o HT w/ HT w/o HT w/ HT w/o HT w/ HT w/o HT w/ HT w/o HT w/ HT

Eager Test 0.17 0.34 0.28 0.56 0.41 0.58 0.21 0.42 -0.23 0.13
Mystery Guest 0.13 0.18 0.38 0.50 0.50 0.55 0.19 0.26 -0.07 0.04
Resource Optimism 0.06 0.07 0.40 0.49 0.52 0.50 0.11 0.13 -0.04 -0.00
Test Redundancy 0.005 0.005 0.65 0.62 0.52 0.51 0.01 0.01 0.02 0.02

Figure 3: Scatter plot to show the spatial distribution of metrics values in clusters for all test smells using DBSCAN.
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Table 6: Results for the cluster-based approach in terms of Precision, Recall, Accuracy, F-Measure, and MCC. The performance refers to the DBSCAN algorithm.

Confusion Matrix Precision Recall Accuracy F-Measure MCC
Test Smell TP FP TN FN
Eager Test 2,592 6,863 65 102 0.27 0.96 0.28 0.43 -0.10
Mystery Guest 1,443 7,997 98 84 0.15 0.95 0.16 0.26 -0.11
Resource Optimism 723 8,717 177 5 0.07 0.99 0.09 0.14 0.02
Test Redundancy 40 9,406 176 0 0.004 1.0 0.02 0.008 0.008

For Test Redundancy, both clusters have the same median val-
ues for PR and SR. As shown in Figure 4 these specific metrics
contribute minimally to the detection of test smells. However, a
clearer separation of clusters can be observed with Posnett vol-
ume and Posnett entropy for all test smells. For example, for
Eager Test, test methods with Posnett entropy < 6 (x = 4.88,
and x = 0.2) and Posnett volume > 19 (x = 489, and x = 465)
are grouped into Cluster 1.

Finally, Table 7 shows the performance of the K-means and
the confusion matrix for each test smell. Also, for this algo-
rithm, the performance is low, with the F-Measure and MCC
reaching a maximum of 21% and 24% respectively for Eager
Test. In terms of Recall, we observed values ranging from 2%
and 13%, while the maximum Precision reached was 78% al-
ways for Eager Test detection. Again, the only high metric is
the Accuracy: the value ranges between 75% and 95%.

In summary, the performance of the two algorithms is gen-
erally low, with the K-means algorithm showing slightly bet-
ter performance than the DBSCAN algorithm. To further ana-
lyze the low performance obtained, we decided to evaluate the
cluster-internal quality analysis to assess their goodness. We
computed Silhouette Score [77], Homogeneity Score [78], Com-
pleteness Score [78], V-Measure Score [79], and Adjusted Rand
Score [80]. While the entire measures are reported in the on-
line appendix [24], we noticed that all quality indexes, except
for Silhouette Score, suggest that data were randomly assigned
within the clusters. Overall, we can conclude that the cluster-
based approach does not work properly in such a context.

5.3. Statistical-based Anomaly Detection

Figure 5 presents the boxplot obtained when analyzing the
anomalies from a statistical point-of-view. For each test smell,
we plotted the distribution of the test smell-specific metrics
used in the heuristic-based approaches to detect the presence
or absence of the test smells. As the reader may observe, there
are several outliers for all test smells, especially for Mystery
Guest, Resource Optimism, and Test Redundancy. In addition,
for these three smells, the plot shows only the median and out-
liers. The data seem to be highly distributed around the median,
with minimal variation within the second and third quartiles.
This indicates a highly homogeneous data distribution, except
for the presence of outliers. A di↵erent discussion can be drawn
for Eager Test. For this smell, the TMC metric did not show any
outlier, while we can observe several outliers in the NMC dis-
tribution. We can conclude that the data for this smell are less
homogeneous compared to the other three test smells.

Table 8 reports the metrics performance obtained with this
approach. Regarding performance, it is worth noting that the
F-Measure and MCC reached 47% and 17%, respectively, for
Eager Test and Mystery Guest, whereas for the other test smells,
the metrics ranged from 1% to 31%. The Precision is low for all
test smells(under 50%), while the Recall is high for all smells.
Finally, the Accuracy ranges between 16% and 40%.

5.4. Statistical Test Results
In terms of statistics, the Friedman Test on the F-Measure

scores of the anomaly detection methods led to the results re-
ported in Table 9. As shown, for three of the test smells consid-
ered—Eager Test, Mystery Guest, and Resource Optimism—the
p-value is lower than 0.05, confirming that there are statistically
significant di↵erences among the anomaly detection methods.

Concerning the Nemenyi Test, the results are depicted in
Figure 6. We observe that three anomaly detection meth-
ods—boxplot rule, DBSCAN, and LOF—show statistically sig-
nificant di↵erences in detecting Eager Test and Mystery Guest.
The blue bars with red central dots in the results indicate
that these techniques have significantly di↵erent performance
metrics compared to others, with the blue central dots within
the blue bars further emphasizing this distinction. For Re-
source Optimism detection, only the boxplot rule and DBSCAN
present significant di↵erences. This is evident from the blue
bars with red central dots, suggesting that these techniques out-
perform others in this specific scenario. For Test Redundancy
detection, no significant di↵erences are observed among the
techniques. The gray bars with red central dots indicate that
the performance metrics of the di↵erent techniques do not show
statistically significant di↵erences in this context.

� Answer to RQ1. The anomaly detection approaches
reached a maximum of 47% of F-Measure in the statistical-
based approach for Eager Test detection, while it is between
0% and 43% for all the other approaches and test smells.
In terms of Recall, the statistical and DBSCAN approaches
achieved the highest results, ranging between 93% and 100%
for the detection of all test smells, while the other approaches
vary between 2% and 75%. Finally, for all smells except Test
Redundancy, the approaches show significant di↵erences.

5.5. Comparing anomaly detection approaches to heuristic-
based and machine learning approaches

Table 10 reports the result in terms of precision, recall, F-
Measure, and MCC by comparing the results coming from
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Figure 4: Scatter plot to show the spatial distribution of metrics values in clusters for all test smells using K-means.

Table 7: Results for the statistical-based approach in terms of Precision, Recall, Accuracy, F-Measure, and MCC. The performance refers to the K-means algorithm.

Confusion Matrix Precision Recall Accuracy F-Measure MCC
Test Smell TP FP TN FN
Eager Test 340 92 6,836 2,354 0.78 0.13 0.75 0.21 0.24
Mystery Guest 109 323 7,772 1,418 0.25 0.07 0.82 0.11 0.05
Resource Optimism 44 388 8,506 684 0.11 0.06 0.88 0.07 0.02
Test Redundancy 1 431 9,151 39 0.002 0.02 0.95 0.004 -0.006

Table 8: Results for the statistical-based approach in terms of Precision, Recall, Accuracy, F-Measure, and MCC.

Confusion Matrix Precision Recall Accuracy F-Measure MCC
Test Smell TP FP TN FN
Eager Test 2,531 5,575 1,353 163 0.31 0.93 0.40 0.47 0.16
Mystery Guest 1,527 6,804 1,291 0 0.18 1.0 0.30 0.31 0.17
Resource Optimism 728 7,563 1,331 0 0.09 1.0 0.21 0.16 0.11
Test Redundancy 40 8,094 1,488 0 0.005 1.0 0.16 0.01 0.03

Table 9: Results achieved from the application of the Friedman test.

Test Smell p-value RQ1 p-value RQ2

Eager Test 9.5902e�14 3.1696e�15

Mystery Guest 5.8132e�09 8.4323e�09

Resource Optimism 9.9534e�06 0.00049182
Test Redundancy 0.07207870 4.8242e � 06

the anomaly detection, the heuristic- and machine learning ap-
proaches. Examining the results, heuristic-based and machine-
learning approaches have performance comparable to or lower
than those obtained from anomaly detection approaches. In
particular, the classical machine learning methods show simi-
lar precision to the LOF algorithm, DBSCAN, and the statis-
tical rule-based methods. For recall, machine learning demon-
strates higher results for Eager Test, Mystery Guest, and Re-
source Optimism compared to the anomaly detection methods
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Table 10: Results for Precision, Recall, F-Measure, and MCC for the heuristic- and ML-based approaches compared to the anomaly detection approaches.

Precision
Anomaly Detection-Based ML Clustering Statistical Heuristic Machine Learning

Test Smell IF LOF OCSVM DBSCAN K-means Boxplot TsDetect DARTS TeReDetect

Eager Test 0.18 0.25 0.17 0.27 0.78 0.31 0.35 0.30 0.30
Mystery Guest 0.14 0.15 0.13 0.15 0.25 0.18 0.40 0.18
Resource Opt. 0.07 0.07 0.06 0.07 0.11 0.09 0.18 0.13
Test Red. 0.004 0.004 0.005 0.04 0.002 0.005 0.00 0.003

Recall
Anomaly Detection-Based ML Clustering Statistical Heuristic Machine Learning

Test Smell IF LOF OCSVM DBSCAN K-means Boxplot TsDetect DARTS TeReDetect

Eager Test 0.43 0.54 0.28 0.96 0.12 0.93 0.16 0.31 0.60
Mystery Guest 0.60 0.56 0.38 0.94 0.07 1.0 0.40 0.75
Resource Opt. 0.61 0.56 0.40 0.99 0.06 1.0 0.37 0.62
Test Red. 0.75 0.70 0.65 1.00 0.02 1.0 0.00 0.17

F-Measure
Anomaly Detection-Based ML Clustering Statistical Heuristic Machine Learning

Test Smell IF LOF OCSVM DBSCAN K-means Boxplot TsDetect DARTS TeReDetect

Eager Test 0.25 0.34 0.21 0.43 0.21 0.47 0.22 0.30 0.40
Mystery Guest 0.23 0.23 0.19 0.26 0.11 0.31 0.40 0.29
Resource Opt. 0.12 0.12 0.11 0.14 0.07 0.16 0.25 0.22
Test Red. 0.01 0.01 0.01 0.008 0.004 0.16 0.00 0.01

MCC
Anomaly Detection-Based ML Clustering Statistical Heuristic Machine Learning

Test Smell IF LOF OCSVM DBSCAN K-means Boxplot TsDetect DARTS TeReDetect

Eager Test -0.30 -0.07 -0.23 -0.09 0.24 0.16 0.06 0.03 0.07
Mystery Guest -0.06 -0.03 -0.07 -0.11 0.05 0.17 0.29 0.10
Resource Opt. -0.03 -0.02 -0.04 0.02 0.02 0.11 0.17 0.16
Test Red. 0.01 0.01 0.02 0.008 -0.006 0.03 -0.01 -0.004

Figure 5: Boxplot representing the outliers detected for each test smell in the
context of the statistical-based approach.

based on machine learning and K-means clustering. In terms of
F-Measure, the machine learning approach outperforms some
of the other methods, particularly for Eager Test and Mys-
tery Guest, with higher F-Measure scores than K-means and
OCSVM, and comparable results to the boxplot rule. However,

in terms of MCC, the machine learning approach shows lower
results than the anomaly detection-based approaches, especially
for Eager Test detection.

As for the heuristic-based approach, we observed that
anomaly detection methods perform better for Eager Test in
terms of precision, while TsDetect achieves higher precision
for Mystery Guest and Resource Optimism. In terms of Re-
call, anomaly detection methods consistently outperform the
heuristic-based approaches, particularly those based on the sta-
tistical rule. Finally, in terms of F-Measure and MCC, the
performance is similar, except for the detection of Mystery
Guest, where TsDetect performs better. A di↵erent discussion
can be drawn for TeReDetect, which performs worse than the
anomaly detection approaches, particularly for Recall, where it
shows a dramatic disparity (0% compared to 100%).

5.6. Statistical Test Results
The results of the Friedman Test are presented in Table 9. For

all test smells, the p-value is lower than 0.05. This indicates
statistically significant di↵erences when comparing anomaly
detection approaches with heuristic and machine learning ap-
proaches. To identify which approaches exhibit these statisti-
cally significant di↵erences, we performed the Nemenyi Test.
As shown in Figure 7, the DBSCAN clustering and statistical
techniques consistently appear at the top of the graph for all four
test smells. Additionally, for Eager Test and Mystery Guest,
classical machine learning algorithms demonstrate statistically
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Figure 6: The likelihood of each model for the four test smells in Nemenyi rank in F-Measure. The circle dots are the median likelihood, while the error bars
indicate the 95% confidence interval. 60% of likelihood means that a classification technique appears at the top rank for 60% of the studied projects.

significant di↵erences. Lastly, heuristic-based approaches show
significant di↵erences only for Mystery Guest, while for the
other smells, these techniques appear in the lower part of the
graph or are indicated by the central red dot.

In conclusion, statistics showed that specific anomaly detec-
tion methods are more e↵ective for certain test smells. For ex-
ample, DBSCAN and statistical techniques are generally top
performers across all test smells, while classical machine learn-
ing algorithms perform well in detecting Eager Test and Mys-
tery Guest. Heuristic-based methods, although e↵ective for
Mystery Guest, generally rank lower for the other test smells.

� Answer to RQ2. The anomaly detection approaches work
better than the heuristic- and machine learning-based tech-
niques, especially in terms of Recall. In terms of F-Measure,
the values are similar when detecting Eager Test, Mystery
Guest, and Test Redundancy, while it is slightly higher for
the baselines in the detection of Resource Optimism. Finally,
we observed statistically significant di↵erences when analyz-
ing the experimented techniques across all test smells.

6. Discussion and Further Analyses

Our findings revealed that the anomaly detection approaches
work better in terms of Recall. At the same time, some addi-
tional considerations should be made to contextualize our re-
sults better and strive for further research on the matter. In par-
ticular, we first conducted an additional investigation to assess
how anomaly detection and heuristic-based approaches com-
pare when employed in a within-project scenario. On the one
hand, such an analysis might reveal the impact of data sources
on the performance of the experimented approaches. On the
other hand, the findings obtained through this additional exper-
imentation might help understand how the three alternative ap-
proaches might be used and complement each other in practice.
In the second place, we also investigated the complementarity
of the approaches in terms of the recommendations provided, in
an e↵ort to assess the extent to which their combination might
potentially lead to better test smell detectors. The following
sections discuss the findings obtained when performing these
two additional analyses.

6.1. Anomaly Detection versus Baseline Approaches: The Im-
pact of Data Sources

The results for RQ2 suggest that the anomaly detection ap-
proaches work better than the heuristic- and machine learning-
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Figure 7: The likelihood of each model for the four test smells in Nemenyi rank in F-Measure. The circle dots are the median likelihood, while the error bars
indicate the 95% confidence interval. 60% of likelihood means that a classification technique appears at the top rank for 60% of the studied projects.

based alternatives. On the one hand, this seems not to be
enough, as the performances achieved in terms of Precision,
F-Measure, and MCC are relatively low. On the other hand, the
low performances of the baselines are particularly significant.
Our findings showed that the anomaly detection methods could
work better than the heuristic- and machine learning-based ap-
proaches in a real-world context, i.e., the cross-project scenario.

To further verify the generalizability of the performances ob-
served in our study, we performed an additional analysis aiming
at assessing the experimented approaches in a within-project
scenario. Such an additional analysis aims to provide insights
into the consistency and robustness of anomaly detection meth-
ods compared to heuristic- and machine learning-based alter-
natives when applied within a single project’s context. In the
scope of this analysis, it is worth remarking that the classical
machine learning baselines were experimented with a di↵er-
ent setting. According to the experiments performed against
the same dataset as our study [21], the best machine learn-
ing models to apply in a within-project scenario are indeed
di↵erent than those to apply in a cross-project scenario. To
perform a fair comparison with this baseline, we, therefore,
exploited these previous findings [21] and experimented with
Random Forest with Borderline-SMOTE for detecting Eager
Test and Resource Optimism, Random Forest with no balanc-

ing for Mystery Guest detection, and Naive Bayes with no bal-
ancing for Test Redundancy detection. Table 11 reports the re-
sults achieved. From the table, we can observe that the perfor-
mances exhibit several notable di↵erences. While in RQ2 the
anomaly detection-based approaches generally performed bet-
ter, in the within-project scenario the experimented baselines
achieved higher performances in some metrics.

Specifically, looking at the Precision and MCC, the machine
learning approach achieved the highest precision for Eager Test
(76%), Mystery Guest (76%), and Resource Optimism (58%).
For F-Measure, the classical machine learning algorithms also
showed better performance for Eager Test with scores of 75%,
significantly higher than all the other techniques, which range
between 23% and 45%. A similar discussion can be drawn for
the detection of Mystery Guest and Resource Optimism: the
results show that the classical machine learning algorithms out-
performed the other approaches.

In terms of Recall, the DBSCAN algorithm reached the high-
est performance for all test smells, suggesting that the algorithm
detects almost all true positives. Despite this, the low Precision
for this anomaly detection approach suggests that the algorithm
may include many irrelevant instances.

Finally, analyzing Test Redundancy, we can observe that al-
most all performance indicators are low or similar to the cross-
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Table 11: Results for Precision, Recall, F-Measure, and MCC for all the approaches in a within-project scenario.

Precision
Anomaly Detection-Based ML Clustering Statistical Heuristic Machine Learning

Test Smell IF LOF OCSVM DBSCAN K-means Boxplot TsDetect DARTS TeReDetect

Eager Test 0.23 0.25 0.22 0.27 0.23 0.31 0.37 0.37 0.76
Mystery Guest 0.16 0.17 0.16 0.15 0.16 0.18 0.42 0.76
Resource Opt. 0.10 0.10 0.09 0.08 0.11 0.09 0.21 0.58
Test Red. 0.008 0.007 0.01 0.004 0.001 0.005 0.00 0.01

Recall
Anomaly Detection-Based ML Clustering Statistical Heuristic Machine Learning

Test Smell IF LOF OCSVM DBSCAN K-means Boxplot TsDetect DARTS TeReDetect

Eager Test 0.55 0.61 0.36 0.97 0.18 0.83 0.17 0.31 0.75
Mystery Guest 0.62 0.68 0.43 0.95 0.23 0.87 0.44 0.49
Resource Opt. 0.63 0.66 0.41 1.0 0.33 0.87 0.37 0.39
Test Red. 0.73 0.65 0.68 1.0 0.05 1.0 0.00 0.43

F-Measure
Anomaly Detection-Based ML Clustering Statistical Heuristic Machine Learning

Test Smell IF LOF OCSVM DBSCAN K-means Boxplot TsDetect DARTS TeReDetect

Eager Test 0.32 0.36 0.27 0.43 0.20 0.45 0.23 0.32 0.75
Mystery Guest 0.26 0.28 0.26 0.20 0.11 0.30 0.44 0.60
Resource Opt. 0.17 0.18 0.15 0.14 0.17 0.16 0.27 0.46
Test Red. 0.01 0.01 0.02 0.008 0.001 0.01 0.00 0.02

MCC
Anomaly Detection-Based ML Clustering Statistical Heuristic Machine Learning

Test Smell IF LOF OCSVM DBSCAN K-means Boxplot TsDetect DARTS TeReDetect

Eager Test -0.8 -0.11 -0.15 -0.1 -0.06 0.11 0.06 0.04 0.66
Mystery Guest -0.06 -0.02 -0.04 -0.12 0.01 0.11 0.29 0.55
Resource Opt. -0.03 -0.02 -0.04 0.03 0.07 0.08 0.15 0.41
Test Red. 0.01 -0.01 0.03 0.007 -0.03 0.04 -0.01 0.04

project scenario. The low overall performance suggests that the
test cases deemed anomalies are not su�ciently di↵erent, lead-
ing to suboptimal detection by anomaly detection approaches.

In conclusion of this analysis, while anomaly detection meth-
ods showed promised results in cross-project scenarios, their
performance metrics were not consistently high. In within-
project scenarios, classical machine learning algorithms outper-
formed anomaly detection in specific metrics, possibly suggest-
ing the need for novel approaches that may support the selection
of the best test smell detector to use on the basis of the con-
text considered and the data sources available. As a side note,
the higher performances observed for classical machine learn-
ing with respect to what was reported in literature [21] calls
for a reflection. Our experimental settings di↵ered from previ-
ous studies: our machine learning baselines were indeed trained
using not only the metrics considered by previous heuristic-
based test smell detectors [14, 15, 48] but also additional test
code metrics related to size, complexity, and readability. These
enhanced performances indicate that incorporating metrics that
characterize test code quality from various perspectives can im-
prove the detection accuracy of machine learning models. In
this sense, our work provides a side contribution to the research
community, paving the way of further refinement of machine
learning approaches for test smell detection.

Additional conclusions can be drawn by qualitatively analyz-
ing the results of the anomaly detection methods in the within-
project scenario. More specifically, we analyzed the potential

reasons why these methods have lower performance than the
baselines, finding the limited data variability as the main rea-
son. Specifically, anomaly detection methods rely on identi-
fying patterns that deviate from the norm. In a within-project
scenario, the variability of test cases might be limited because
the coding practices and test structures are relatively consis-
tent within the same project. This limited variability makes it
challenging for anomaly detection methods to distinguish be-
tween normal and anomalous behavior e↵ectively. To verify
this conjecture, we conducted additional analyses. Specifically,
we computed multiple structural and semantic metrics to estab-
lish the similarity between the test classes of the considered
projects. For each project, we first extracted the set of test
classes and methods available. From a structural perspective,
we computed (1) the number of distinct developers involved in
the development of the test classes; (2) the number of test meth-
ods per class; (3) the average method length; (4) the number of
assertions per test method; (5) the use of setup and teardown

methods; (6) the distribution of test methods across di↵erent
packages; and (7) the frequency of specific testing frameworks
or libraries used. From a semantic perspective, we computed
(1) the lexical similarity between test method names, using the
cosine similarity metric [81]; and (2) the similarity in the struc-
ture of test cases, considering the adherence of the tests to the
arrangement-act-assert pattern; (3) the reuse of test utility meth-
ods across di↵erent test classes; (4) the use of comments and
documentation within test methods. Altogether, these metrics

16



can e↵ectively assess the similarity of test classes within indi-
vidual projects by capturing both the structural consistency and
the semantic uniformity of the tests, which reflect the standard-
ized practices and conventions used throughout the project.

Upon collection of these metrics, we analyzed the distribu-
tion of the various metrics by computing boxplots and assess-
ing the variability of the metric values across the test classes of
individual projects. Our findings confirm the limited variability
of data. Indeed, for all the considered projects, the distribution
of all metric values was tightly clustered around their respective
medians, with small interquartile ranges and few outliers. This
suggests that the test classes within each project exhibit high
consistency in both structural and semantic characteristics, re-
inforcing our argument that the limited variability challenges
the e↵ectiveness of anomaly detection methods in distinguish-
ing between normal and anomalous behaviors.

As part of our online appendix [24], we included a technical
report explaining how we computed the metrics considered in
such an additional analysis as well as the detailed results.

6.2. Anomaly Detection versus Baseline Approaches: The
Qualitative Perspective

To provide a broader overview of the low performance ob-
served, we performed an additional qualitative analysis of the
false positives and negatives output by the experimented ap-
proaches, seeking possible reasons for failure. In particular, the
two first authors of the paper have jointly and systematically an-
alyzed the set of false positive and negative instances for each
approach. Each instance was reviewed in detail, focusing on (1)
the context and nature of the test smells considered, and (2) the
consistency between the metrics computed and the actual con-
tent of the test methods: in this way, the two inspectors could
identify the elements of the test cases that were not properly
measured by metrics or that biased the metric computation. The
inspection process lasted 50 person-hour. At the end, the other
authors of the paper were involved. The two original inspec-
tors presented the results of the qualitative analysis, guiding a
discussion on the main findings achieved. Such a discussion al-
lowed us to refine some considerations and led to the final set
of conclusions drawn, which are discussed below.

Starting from Eager Test, traditional heuristic-based tools
implement detection rules that essentially rely on the number
of method calls made by a test method, identifying a smell if
the test method makes more than one call. Alternative met-
rics, like the textual ones employed by DARTS, gather similar
pieces of information, extracting the textual similarity between
the methods called by a test case. While these detection rules
are in line with the original definition of the test smell, they do
not fully account for the complexity of unit testing. There are
two specific issues that should be remarked:

• Test methods may perform auxiliary method calls to set the
testing environment. These auxiliary calls might include
additional initialization steps than those performed by the
setup method: for instance, initializing mock objects, set-
ting up database connections, and configuring external ser-
vices. Such auxiliary calls are not directly related to the

core functionality being tested but are necessary for setting
the test environment. As result, these methods can lead to
false positives when detecting Eager Test smells since the
detection rule does not di↵erentiate between auxiliary and
actual method calls intended to test specific functionalities
of the production code. As an exemplary case, consider
the test reported in Listing 1, which belongs to the wro4j
project available in the dataset. The test is not smelly, yet
all the heuristic approaches identified it as such.

1 @Test
2 public void testDoFilterInDEPLOYMENTMode ()
3 throws Exception {
4 when(mockRequest.getRequestURI ()).

thenReturn("/g2.js");
5 victim.setWroManagerFactory(

createValidManagerFactory ());
6 setConfigurationMode(

FilterConfigWroConfigurationFactory.
PARAM_VALUE_DEPLOYMENT);

7 victim.init(mockFilterConfig);
8 victim.doFilter(mockRequest , mockResponse ,

mockFilterChain);
9 }

Listing 1: Example of false positive Eager Test due to mock objects.

In similar cases, the anomaly detectors could sometimes
properly label the smelliness of the test. For example,
the detector based on the analysis of the statistical boxplot
could not identify an outlier with respect to the whole dis-
tribution of the NMC metric, hence correctly labeling the
test as non-smelly. On the contrary, the machine learning-
based anomaly detectors failed in most of the cases, being
biased by the use of auxiliary methods.

• Existing tools do not explicitly consider the di↵erence
between intra-method and intra-class unit testing. Intra-
method unit testing involves testing individual methods
within the same class, while intra-class unit testing in-
volves testing interactions between methods within the
same class. As such, the detection rules may wrongly flag
smelly test cases when tests perform intra-class unit test-
ing. For example, a test method that calls multiple helper
methods within the same class to verify the overall behav-
ior might be incorrectly identified as an Eager Test smell,
even though it is testing a coherent and focused function-
ality. An example of an intra-class test comes from the
JFreeChart project and it is shown below in Listing 2.

1 @Test
2 public void testPrune () {
3 DefaultTableXYDataset dataset = new

DefaultTableXYDataset ();
4 dataset.addSeries(createSeries1 ());
5 dataset.removeSeries (1);
6 dataset.prune ();
7 assertEquals (4,dataset.getItemCount ());
8 }

Listing 2: Example of false positive Eager Test.

According to our qualitative investigation, this issue bi-
ased all the detection approaches experimented, hence rep-
resenting a critical concern for test smell detection.
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A similar discussion can be drawn for the other test smells
considered in the study. As for Resource Optimism, which
involves tests relying on external resources without verifying
their status, current metrics are not specifically defined to ac-
count for multiple conditions that may arise in unit testing. In
this case, a representative example is the use of mocks, i.e.,
simulated objects that mimic the behavior of real objects in con-
trolled ways: mocked objects should not be considered as part
of the computation of the metrics, but they instead do. This mis-
calculation can lead to incorrect identification of Resource Op-
timism smells, as the presence of mocks indicates a controlled
testing environment rather than reliance on actual external re-
sources. An example of a test case that was wrongly classified
by all the approaches is shown in Listing 3:

1 @Test
2 public void testAggregatedComputedFolder2 ()
3 throws Exception {
4 final HttpServletRequest request = Mockito.mock

(HttpServletRequest.class);
5 final HttpServletResponse response = Context.

get().getResponse ();
6 Mockito.when(request.getRequestURI ()).

thenReturn("/wro4j/wro/path/to/g1.css");
7 Context.unset ();
8 Context.set(Context.webContext(request ,

response , Mockito.mock(FilterConfig.class)));
9

10 managerFactory.create ().process ();
11

12 Assert.assertEquals("/wro4j/wro/path/to/",
Context.get().getAggregatedFolderPath ());

13 }

Listing 3: Example of false positive Resource Optimism due to mock object.

We found that mocks systematically influence the detection
performance, representing a key concern that may bias the cor-
rect interpretation of the smelliness of test code.

On a similar note, Mystery Guest, which refers to tests us-
ing external resources without clear visibility or initialization
within the test itself, can also be misidentified. For example,
if a test method uses configuration files or environment vari-
ables that are not explicitly initialized within the test, current
metrics might incorrectly flag these tests as not having a Mys-
tery Guest smell, even though the use of external resources
might be well-documented and properly managed elsewhere in
the test suite. For instance, consider the example reported in
Listing 4, coming from the dropwizard project. Specifically,
the setup method prepares a servlet environment with several
servlets registered to handle specific URL patterns, start the
server, and configure MIME types for certain file extensions.
Looking at the test case, the code adds an additional resource,
i.e., foo.mp4, before verifying that the server correctly sup-
ports byte-range requests for media files.

1 @BeforeClass
2 public static void startServletTester () throws

Exception {
3 SERVLET_TESTER.addServlet(DummyAssetServlet

.class , DUMMY_SERVLET + ’*’);
4 SERVLET_TESTER.addServlet(

NoIndexAssetServlet.class , NOINDEX_SERVLET +
’*’);

5 SERVLET_TESTER.addServlet(
NoCharsetAssetServlet.class ,
NOCHARSET_SERVLET + ’*’);

6 SERVLET_TESTER.addServlet(RootAssetServlet.
class , ROOT_SERVLET + ’*’);

7 SERVLET_TESTER.start ();
8 SERVLET_TESTER.getContext ().getMimeTypes ().

addMimeMapping("mp4", "video/mp4");
9 SERVLET_TESTER.getContext ().getMimeTypes ().

addMimeMapping("m4a", "audio/mp4");
10 }

1 @Test
2 public void supportsByteRangeForMedia () throws

Exception {
3 request.setURI(ROOT_SERVLET + "assets/foo.

mp4");
4 response = HttpTester.parseResponse(

SERVLET_TESTER.getResponses(request.generate
()));

5 assertThat(response.getStatus ()).isEqualTo
(200); assertThat(response.get(HttpHeader.
ACCEPT_RANGES)).isEqualTo("bytes");

6 request.setURI(ROOT_SERVLET + "assets/foo.
m4a");

7 response = HttpTester.parseResponse(
SERVLET_TESTER.getResponses(request.generate
()));

8 assertThat(response.getStatus ()).isEqualTo
(200); assertThat(response.get(HttpHeader.
ACCEPT_RANGES)).isEqualTo("bytes");

9 }

Listing 4: Example of false negative Mystery Guest.

Our findings suggest that (1) current detectors may not prop-
erly handle this situation; and (2) a contextual gathering phase
focused on the preliminary identification of shared or global
setup procedures could help di↵erentiate between legitimate
use of external resources and actual Mystery Guest smells.

Finally, as for Test Redundancy, which occurs when multiple
tests cover the same functionality unnecessarily, current met-
rics and tools rely on code coverage information. Despite being
a valuable source, coverage may not provide a comprehensive
view on the matter. Two tests may cover a similar path in pro-
duction code yet not be redundant if they verify di↵erent aspects
of the functionality. For example, they may verify two special
inputs that lead to failures. For instance, consider the two tests
reported in Listing 5. They both cover a similar path, yet they
exercise the production code for two di↵erent edge cases that
may lead to defective behaviors.

1 @Test
2 public void testGlobFilter () throws Exception {
3 createHttpFSServer(false , false);
4 String user = HadoopUsersConfTestHelper.

getHadoopUsers ()[0];
5 URL url = new URL(TestJettyHelper.getJettyURL ()

,
6 MessageFormat.format(
7 "/webhdfs/v1/tmp?user.name ={0}& op=

liststatus&filter=f*", user));
8 HttpURLConnection conn = (HttpURLConnection)

url.openConnection ();
9 Assert.assertEquals(conn.getResponseCode (),

HttpURLConnection.HTTP_OK);
10 BufferedReader reader = new BufferedReader(
11 new InputStreamReader(conn.getInputStream ()

));
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12 reader.readLine ();
13 reader.close();
14 }
15

16

17 @Test
18 public void testHdfsAccess () throws Exception {
19 createHttpFSServer(false , false);
20

21 String user = HadoopUsersConfTestHelper.
getHadoopUsers ()[0];

22 URL url = new URL(TestJettyHelper.getJettyURL ()
,

23 MessageFormat.format("/webhdfs/v1/?user.
name ={0}& op=liststatus",

24 user));
25 HttpURLConnection conn = (HttpURLConnection)

url.openConnection ();
26 Assert.assertEquals(conn.getResponseCode (),

HttpURLConnection.HTTP_OK);
27 BufferedReader reader = new BufferedReader(
28 new InputStreamReader(conn.getInputStream ()

));
29 reader.readLine ();
30 reader.close();
31 }

Listing 5: Example of false positive Test Redundancy.

Also in this case, we found that this aspect biases all the ex-
perimented approaches. As a consequence, additional sources
of information, like semantic or textual information, should be
assessed. Especially in the era of large language models, in-
tegrating such information could enhance the detection of truly
redundant tests. Because of the reasons above, we argue that (1)
novel metrics should account for the complexity of unit testing
and potentially highlight contextual factors that may influence
the evaluation of the smelliness of test artifacts; (2) complemen-
tary pre-processing activities would be beneficial to guide test
smell detection. For instance, test smell detection tools could
be accompanied by a preliminary classification step that helps
discriminate between intra-method and intra-class test cases, re-
ducing the risk of misclassification of smelly instances. At the
same time, we also highlight the need for the research commu-
nity to revisit well-established definitions that have remained
unchanged for decades. For instance, the original definition of
Eager Test indeed provides a generic statement that might be
worth further elaboration in order to encourage researchers to
develop more detailed and nuanced definitions.

Upon the collection of the performance of the heuristic-based
approaches, we also inquired about the potential reasons be-
hind the di↵erent performance observed when executing the
heuristic-based approaches with respect to the original evalu-
ations of these tools. In this respect, while we cannot speculate
on the reasons behind the di↵erences observed, we can provide
two major observations:

• Most previous works have been assessed on a smaller
scale. For example, TsDetect was evaluated on a total
of 65 annotated test cases, while DARTS was assessed on
a set of 494 test smell instances. In contrast, our study
provides greater ecological validity by evaluating these ap-
proaches on 5,003 individual smell instances. The larger

experimental size in our study may contribute to the ob-
served di↵erences in performance.

• Regarding TeReDetect, the original manuscript evaluated
the approach using the mutation analysis technique to
measure the fault detection e↵ectiveness of the reduced
test suite of a real Java project. This type of experimenta-
tion was di↵erent, focusing on the impact of detection on
mutation analysis rather than on assessing detection accu-
racy directly. Consequently, our work o↵ers the first as-
sessment specifically targeting the detection accuracy of
this tool, which may explain the discrepancies.

These observations suggest that the di↵erences in perfor-
mance could be due to the larger scale of our dataset and the
di↵erent experimental focuses compared to previous studies.

6.3. Anomaly Detection versus Baseline Approaches: The Role
of Complementarity

Our study reveals that the anomaly detection approaches
could work in the context of test smells detection. Nonethe-
less, we need to understand whether some approaches analyzed
may work better than others and whether there are complemen-
tarities among them.

To further elaborate on the di↵erences between the ap-
proaches analyzed, we conducted an additional analysis among
the experimented approaches. Given two approaches mi and
mj, we computed (1) the amount of test smells correctly pre-
dicted by both mi and mj (mi

T
mj), (2) the amount of test

smells correctly predicted by mi only and missed by mj (mi\mj),
and (3) the amount of test smells correctly predicted by mj
only and missed by mi (mj\mi). In addition, given the four
experimented approaches, mi, mj, mk, and mp, we computed
(1) the amount of test smells correctly predicted by mi only
and missed by m j, mk, and mp (mi\(m j

S
mk
S

mp)), and (2)
the amount of test smells correctly predicted by all approaches
((mi
T

m j
T

mk
T

mp)\(mi
S

m j
S

mk
S

mp)).
Table 12 presents the results achieved when assessing the

overlap, and Table 13 presents the results for the complemen-
tarity analyses. When comparing each approach, we could ob-
serve that most of the correct predictions are common in the
statistical and cluster-based approaches, i.e., 90.16% for Ea-
ger Test, 94.49% for Mystery Guest, 93.31% for Resource Op-
timism, and 100% for Test Redundancy. The correct prediction
between the other approaches is di↵erent for each test smell.
It implies that the detection of test smells may vary depending
on the approach employed. In addition, the machine learning-
based anomaly detection methods complement the heuristic-
based approaches for detecting all test smells, 23.85% for Eager
Test, and 100% for the other test smells.

Considering the complementary results combining the
anomaly detection approaches, we can observe that the heuris-
tic and ML-based approaches do not complement the combina-
tion of other approaches. However, statistical approaches com-
plement the others in 1.74% for Eager Test, and 0.06% for Mys-
tery Guest. While the contribution of statistical approaches is
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Table 12: Overlap results for the comparison of the anomaly detection and heuristic-based approaches.

Eager Test Mystery Guest Resource Optimism Test Redundancy
Stats

T
Cluster Stats \ Cluster Cluster \ Stats Stats

T
Cluster Stats \ Cluster Cluster \ Stats Stats

T
Cluster Stats \ Cluster Cluster \ Stats Stats

T
Cluster Stats \ Cluster Cluster \ Stats

90.16% 3.78% 6.05% 94.49% 5.50% 0.00% 93.31% 0.68% 0.00% 100.00% 0.00% 0.00%
Stats

T
Heur. Stats \ Heur. Heur. \ Stats Stats

T
Heur. Stats \ Heur. Heur. \ Stats Stats

T
Heur. Stats \ Heur. Heur. \ Stats Stats

T
Heur. Stats \ Heur. Heur. \ Stats

37.18% 60.64% 2.16% 0.00% 100.00% 0.00% 0.00% 100.00% 0.00% 0.00% 100.00% 0.00%
Stats

T
ML Stats \ ML ML \ Stats Stats

T
ML Stats \ ML ML \ Stats Stats

T
ML Stats \ ML ML \ Stats Stats

T
ML Stats \ ML ML \ Stats

18.68% 80.65% 0.66% 27.30% 72.69% 0.0% 38.04% 61.95% 0.0% 32.65% 67.5% 0.0%
Stats

T
ML-C Stats \ ML-C ML-C \ Stats Stats

T
ML-C Stats \ ML-C ML-C \ Stats Stats

T
ML-C Stats \ ML-C ML-C \ Stats Stats

T
ML-C Stats \ ML-C ML-C \ Stats

54.82% 41.73% 3.43% 67.25% 32.74% 0.0% 36.26% 63.73% 0.0% 22.50% 77.50% 0.0%
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Table 13: Complementarity results for combining the anomaly detection and heuristic-based approaches.
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not significant, their positive impact on most test smells sug-
gests they could be a useful component in a comprehensive
anomaly detection strategy.

Based on the previously discussed observations, the ap-
proaches appear to be complementary. This synergy suggests
the potential for developing a meta-approach that dynamically
selects the most suitable technique for detecting test smells, de-
pending on the specific characteristics of the test case. Such a
meta-approach would leverage the strengths of each individual
technique, optimizing test smell detection by applying the most
e↵ective method for each unique scenario.

7. Threats To Validity

This section discusses the potential threats that may a↵ect the
validity of our empirical study.

Construct validity. The first concern revolves around the
test smells dataset exploited in our research. We based our in-
vestigation on a large-scale and curated dataset released in pre-
vious work [21], which comprises 3,652 smelly test cases out
of 9,633 test cases. However, it is important to acknowledge
that the dataset might not entirely capture the broad perspective

of developers on test smells due to their intrinsically subjective
nature. A second threat concerns the computation of indepen-
dent variables, which relied on metrics previously defined in
the literature. We specifically collected and utilized metrics es-
tablished in test smell research to ensure a fair comparison be-
tween heuristic-based approaches and anomaly detection meth-
ods. This methodological choice allows for a direct and equi-
table evaluation of the di↵erent detection techniques. As part of
our future research agenda, we plan to identify the limitations
of the current metrics and develop new features to enhance test
smell detection. Furthermore, our study incorporated an addi-
tional set of metrics able to characterize test code quality from
various perspectives, potentially boosting the overall detection
capabilities of anomaly detection methods. Concurrently, we
evaluated the role of these additional metrics in improving ex-
isting test smell detectors, including machine learning-based
approaches, thereby exploring avenues for refining and advanc-
ing test smell detection methodologies.

External Validity. As for the generalizability of the con-
clusions, the main threat concerns the subject projects of our
study. The dataset exploited was based on 66 Java open-source
projects from GitHub, which are only a fraction of the com-
plete picture of open-source software. Therefore, we cannot
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ensure that our findings generalize when considering di↵erent
programming languages or other software systems. In this re-
gard, we made all materials and scripts as part of an online ap-
pendix to stimulate further research that may corroborate our
findings in di↵erent contexts [24].

In the second place, we had to limit the analysis to Java for a
key reason. Most of the tools used in the study are only avail-
able for Java [17, 47]: this is true for all the heuristic approaches
exploited, but also for the additional data analytics instruments
employed to collect metrics, e.g., the analytical tool used to
compute readability metrics [50]. To the best of our knowledge,
current research does not provide similar data analytics tools
and heuristic test smell detectors that may be used to run our
study on projects written in di↵erent programming languages.
Consequently, expanding the study to include diverse program-
ming languages was unfeasible, as it would have required build-
ing from scratch - and, more importantly, validating - the tools
required to conduct the study.

While this threat cannot be fully mitigated, two key points
need to be discussed. First, according to the 2023 report from
JetBrains,2 Java remains one of the most popular programming
languages, with 49% of developers still using it. This suggests
that our findings remain highly relevant to a significant por-
tion of the software development community. Given the Java’s
widespread, especially in large-scale, enterprise-level systems,
our results o↵er valuable insights into a substantial segment of
the open-source ecosystem. Then, while our study is focused
on Java, the performance issues we identified are rooted in the
process of test smell detection rather than the specific program-
ming language. Test smells, such as Mystery Guest, are defined
in ways that are not inherently related to any single language.
Therefore, the qualitative insights we gained from this study are
likely to generalize to other object-oriented languages. While
more studies in di↵erent languages are needed, we believe our
findings are broadly applicable because they address fundamen-
tal aspects of test smell definitions and detection.

Another threat concerns the generalizability of industry-scale
projects. We acknowledge that there are di↵erences between
open-source and industrial projects, particularly in terms of de-
velopment processes and testing strategies, which may influ-
ence the presence of test smells. However, it is important to
emphasize that we performed additional analysis on the char-
acteristics of the projects to evaluate the structural and seman-
tic profiles, as reported in Section 6.1. These metrics o↵er a
solid foundation for assessing the applicability of our findings
to industry-scale projects with similar characteristics. For in-
stance, the distribution of test methods across packages and the
reuse of test utility methods are practices that scale with project
size, whether open-source or proprietary. Similarly, the use of
testing frameworks and the presence of setup and teardown
methods are fundamental aspects of test quality assurance, re-
gardless of the project’s scope or environment.

Conclusion validity. This category refers to the relation be-
tween treatment and outcome. We did not have a baseline for

2https://www.jetbrains.com/lp/devecosystem-2023/
languages/

the anomaly detection methods experimented with, as our work
represents the first attempt to study these approaches for test
smell detection. As such, we experimented with multiple tech-
niques to understand their performance. Our online appendix
[24] includes all our findings, which researchers can use to un-
derstand further the impact of anomaly detection techniques
for test smell detection. We acknowledge the inherent chal-
lenges in comparing di↵erent approaches due to variations in
how test smells are detected and how performance is evalu-
ated. For instance, heuristic-based methods rely on specific
thresholds, while anomaly detection techniques identify out-
liers based on data characteristics, making direct comparisons
di�cult. Additionally, some methods may perform better in dif-
ferent project contexts, as noted in Section 6.1. To strengthen
our comparison and the conclusions drawn in the study, we ap-
plied statistical analyses to verify the di↵erences observed be-
tween (1) the experimented anomaly detection methods in RQ1
and (2) the anomaly detection methods and heuristic- and ma-
chine learning-based baselines in RQ2. Specifically, we first
verified the normality of our data using the Shapiro-Wilk test
[76]. Then, we computed appropriate statistical tests, such as
the Friedman and Nemenyi tests [74, 75], to determine if there
were any statistically significant di↵erences in terms of the F-
Measure scores achieved by the experimented approaches.

Internal Validity. This category of threat concerns the se-
lection and implementation of anomaly detection-based ap-
proaches to conduct our empirical study on test smell detection.
To address this, we employed robust and well-known anomaly
detection approaches that are widely used in such a context [2].

8. Conclusion and Future Work

In this paper, we performed an empirical study to assess
the performance of anomaly detection approaches to detect test
smells. We considered a dataset with a total of 9,633 test cases
from 66 open-source Java projects, with 2,699 instances of Ea-
ger Test, 1,534 instances of Mystery Guest, 730 instances of
Resource Optimism, and 40 instances of Test Redundancy.

First, in RQ1, we investigated how anomaly detection de-
tects test smells. As a result, their performance in detect-
ing test smells did not exceed 47% for Eager Test, 31% for
Mystery Guest, 16% for Resource Optimism and Test Redun-
dancy. Then, in RQ2, we investigated how the anomaly de-
tection approaches perform when compared to heuristic- and
machine learning-based approaches, finding that anomaly de-
tection approaches have a higher Precision and Recall, while
the F-Measure is similar in the context of Mystery Guest and
Resource Optimism detection. Our results and further analy-
ses suggest that anomaly detection methods are promising so-
lutions to be adopted in a real-world scenario. This has practical
implications for developers who may benefit from using a com-
bination of methods to optimize test smell detection. Moreover,
we emphasized that the low precision of some methods may
lead to an increased number of false positives, which developers
should be aware of when interpreting the results. This is cru-
cial for integrating such tools into real-world workflows with-
out overwhelming developers with potentially irrelevant results.
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Furthermore, the low performance observed for the heuristic-
based approaches suggests that their current definitions and im-
plementations present challenges that limit their e↵ectiveness.

The low F-Measure should be viewed not as a deterrent but
as a starting point for further exploration and improvement of
anomaly detection methods. Future research may explore the
identification of new metrics to detect smelly instances and the
feasibility of creating context-dependent test smell detectors, as
well as the need to design more robust and accurate approaches.
On the basis of the conclusions drawn in our study—especially
those concerning the promises of context-dependent metrics
and test smell detectors—we may provide some outlook on how
research may approach the problem of test smell detection in
the future. In particular, traditional metrics do not account for
the specific context of the project or the development environ-
ment. Context-dependent metrics may consider various factors
such as the project’s domain, the team’s coding practices, and
the historical evolution of the test suite. By incorporating these
factors, context-dependent metrics can provide more accurate
and relevant assessments of test smells, tailoring the detection
process to the unique characteristics of each project. For exam-
ple, an adaptive algorithm could analyze the historical test exe-
cution data to identify patterns in how frequently di↵erent parts
of the codebase are tested together. It could then dynamically
adjust the criteria for detecting Eager Test instances, which oc-
cur when a test method unnecessarily tests multiple methods
or functionalities at once. If a project has a pattern of inte-
grating tightly coupled functionalities that are typically tested
together, the algorithm would recognize this context and set a
higher threshold for identifying Eager Test smells. Conversely,
in a project where test methods are generally more focused and
isolated, the algorithm would lower the threshold to catch po-
tential issues more e↵ectively.

This adaptive, context-aware approach may enhance the pre-
cision of test smell detection by aligning more closely with the
project’s actual coding practices and quality standards. Further-
more, anomaly detection methods can significantly benefit from
incorporating context-dependent metrics. By understanding the
specific norms and patterns within a project, these methods can
better di↵erentiate between normal and anomalous behaviors.
This could involve integrating machine learning techniques that
learn from the project’s historical data and evolving practices,
continuously refining the detection criteria based on the ongo-
ing changes in the codebase and testing strategies. Addition-
ally, investigating the impact of di↵erent contextual factors on
the e↵ectiveness of test smell detection can help refine these
approaches, ensuring they are robust and generalizable across
various types of projects and development environments.

Another area of investigation could be the integration of
anomaly detection methods with traditional static analysis tools
or more sophisticated semantic analysis approaches. Anomaly
detection, which is typically used for identifying unusual pat-
terns in data, can be employed to detect outliers in test code
metrics. These outliers may possibly correspond to test smells
or other quality issues. By combining anomaly detection with
other tools that can better capture the context and intent behind
test cases, the overall accuracy of the detection may improve.

For example, combining code metric analysis with anomaly de-
tection could help identify rare but critical test smells that are
otherwise missed by conventional detectors.

In addition, extending validation e↵orts to diverse software
systems (including the industry-scale projects) and languages
would broaden the relevance and corroborate our findings in
di↵erent contexts. Finally, we plan to empirically assess the
anomaly detection approaches on other test smells to verify the
scalability of our approach.
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